K. Riemslagh

Learn More
A two-dimensional axisymmetric computer model is developed for the simulation of the filling flow in the left ventricle (LV). The computed results show that vortices are formed during the acceleration phases of the filling waves. During the deceleration phases these are amplified and convected into the ventricle. The ratio of the maximal blood velocity at(More)
Pressure and flow pulsations in the fetal heart propagate through the precordial vein and the ductus venosus (DV) but are normally not transmitted into the umbilical vein (UV). Pulsations in the umbilical vein do occur, however, in early pregnancy and in pathological conditions. Such transmission into the umbilical vein is not well understood. In(More)
Bileaflet heart valves are currently the most commonly implanted type of mechanical prosthetic valve, because of their low transvalvular pressure drop, centralised flow and durability. However, in common with all mechanical heart valves, implanted bileaflet valves show an inherent tendency for blood clot formation at the valve site. Fluid dynamical(More)
Both invasive left-ventricular pressure measurements and non-invasive colour M-mode echographic measurements have shown the existence of intraventricular pressure gradients (IVPGs) during early filling. The mechanisms responsible for these IVPG cannot be completely explained by the experiments. Therefore a one-dimensional numerical model is developed and(More)
  • 1