Learn More
The contribution of peptide groups to H alpha and H beta proton chemical shifts can be modeled with empirical equations that represent magnetic anisotropy and electrostatic interactions [Osapay, K. and Case, D.A. (1991) J. Am. Chem. Soc., 113, 9436-9444]. Using these, a model for the 'random coil' reference state can be generated by averaging a dipeptide(More)
Glutathione reductase (EC; CAS registry number 9001-48-3) and trypanothione reductase (CAS registry number 102210-35-5), which are related flavoprotein disulfide oxidoreductases, have marked specificities for glutathione and trypanothione, respectively. A combination of primary sequence alignments and molecular modeling, together with the(More)
Conformational disorder in crystal structures of ribonuclease-A and crambin is studied by including two independent structures in least-squares optimizations against X-ray data. The optimizations are carried out by X-ray restrained molecular dynamics (simulated annealing refinement) and by conventional least-squares optimization. Starting from two identical(More)
Solution NMR structures for sperm whale carbonmonoxy myoglobin have been calculated using 1301 distance restraints determined from nuclear Overhauser enhancement (NOE) measurements on 15N-labeled protein and chemical shift calculations for 385 protons. Starting structures included four crystal forms of myoglobin and 12 structures generated by metric matrix(More)
  • 1