Learn More
Stream temperature, an important measure of ecosystem health, is expected to be altered by future changes in climate and land use, potentially leading to shifts in habitat distribution for aquatic organisms dependent on particular temperature regimes. To assess the sensitivity of stream temperature to change in a region where such a shift has the potential(More)
A systematic study was carried out to dope single-walled carbon nanotube (SWNT) bundles with varying amounts of boron using the pulsed laser vaporization technique. Targets containing boron concentrations ranging from 0.5 to 10at.% boron were prepared by mixing elemental boron with carbon paste and the Co/Ni catalysts. The laser-generated products that were(More)
It is shown that 1,4-benzenediol (hydroquinone) and TiO2 nanotubes can form a hybrid structure that is stable in aqueous environment. The incorporation of hydroquinone restores the local structure of nanotubes to anatase-like as evidenced by Raman spectroscopy. Subtle overall structural changes take place upon annealing of the hybrid structure contributing(More)
Crystalline nanobelts of ZnO and SnO2 were prepared from a thermal evaporation of oxide powders inside an alumina tube in the absence of catalysts. Typical dimensions of the nanobelt samples ranged from approximately 10 to 100 microns in length, 30 to 300 nm in width, and 6 to 30 nm in thickness. Room temperature Raman spectra were obtained on pressed mats(More)
We have measured the Raman spectra of Sb doped (ZrTe52xSbx ; 0,x,0.25) and Hf doped (ZryHf12yTe5 ; 0,y,1) pentatellurides in the 90–300 cm 21 range, and compared them to the corresponding spectrum for the parent material ZrTe5 . X-ray diffraction data revealed that the pentatelluride structure prevails at all doping concentrations. With increasing Sb(More)
We report a new pulsed-laser vaporization (PLV) technique to synthesize nanowires of single-crystal ZnO having a wurtzite structure by using colloidal gold nanoparticles as seeding catalysts. The average diameter of the nanowires is approximately 13 nm, with a very narrow range of 7 to 25 nm. The nanowires are straight for the most part, with the axes(More)
  • 1