Learn More
Carbohydrate-responsive element-binding protein (ChREBP) is a new transcription factor that binds to the carbohydrate-responsive element of the l-type pyruvate kinase gene (l-PK). The aim of this study was to investigate the mechanism by which feeding high fat diets results in decreased activity of ChREBP in the liver (Yamashita, H., Takenoshita, M.,(More)
The ability of an organism to sense and store nutrients is vital to survival. The liver is the major organ responsible for converting excess dietary carbohydrate to lipid for storage. An elegant molecular pathway has evolved that allows increased glucose flux into hepatocytes to generate a signaling molecule, xylulose 5-phosphate, that triggers rapid(More)
The liver provides for long-term energy needs of the body by converting excess carbohydrate into fat for storage. Insulin is one factor that promotes hepatic lipogenesis, but there is increasing evidence that glucose also contributes to the coordinated regulation of carbohydrate and fat metabolism in liver by mechanisms that are independent of insulin. In(More)
Carbohydrates mediate their conversion to triglycerides in the liver by promoting both rapid posttranslational activation of rate-limiting glycolytic and lipogenic enzymes and transcriptional induction of the genes encoding many of these same enzymes. The mechanism by which elevated carbohydrate levels affect transcription of these genes remains unknown.(More)
Recently we purified and identified a previously uncharacterized transcription factor from rat liver binding to the carbohydrate responsive element of the L-type pyruvate kinase (L-PK) gene. This factor was named carbohydrate responsive element binding protein (ChREBP). ChREBP, essential for L-PK gene transcription, is activated by high glucose and(More)
Low phosphate and high phosphate forms of phosphofructokinase (Furuya, E., and Uyeda, K. (1980) J. Biol. Chem. 255, 11656-11659) from rat liver were purified to homogeneity and various properties were compared. The specific activities of these enzymes and their electrophoretic mobilities on polyacrylamide in sodium dodecyl sulfate are the same. A limited(More)
Carbohydrate response element-binding protein (ChREBP) is a glucose-responsive transcription factor that plays a critical role in the glucose-mediated induction of genes involved in hepatic glycolysis and lipogenesis. Circulating blood glucose levels affect ChREBP activity in hepatocytes largely by post-translational mechanisms that include(More)
Carbohydrate-responsive element binding protein (ChREBP) is a transcription factor that activates lipogenic genes in liver in response to excess carbohydrate in the diet. ChREBP is regulated in a reciprocal manner by glucose and cAMP. cAMP-dependent protein kinase (protein kinase A) phosphorylates two physiologically important sites in ChREBP, Ser-196,(More)
Carbohydrate response element (ChRE)-binding protein (ChREBP) is a recently discovered transcription factor that is activated in response to high glucose concentrations in liver independently of insulin. ChREBP was first identified by its ability to bind the ChRE of the liver pyruvate kinase (LPK) gene. We recently reported that the increase in expression(More)