Learn More
BACKGROUND Autonomous control of surgical robotic platforms may offer enhancements such as higher precision, intelligent manoeuvres, tissue-damage avoidance, etc. Autonomous robotic systems in surgery are largely at the experimental level. However, they have also reached clinical application. METHODS A literature review pertaining to commercial medical(More)
9 Abstract. Fuzzy logic controllers (FLCs) are finding increasing popularity in real industrial 10 applications, especially when the available system models are inexact or unavailable. This paper 11 proposes a zero-order Takagi–Sugeno parameterized digital FLC, processing only the active rules 12 (rules that give a non-null contribution for a given input(More)
In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: a b s t r a c t This paper presents a System on Chip (SoC) for the path following task(More)
The paper describes a low computational power method for detecting sensor faults. A typical fault detection unit for multiple sensor fault detection with modelbased approaches, requires a bank of estimators. The estimators can be either observer or artificial intelligence based. The proposed control scheme uses an artificial intelligence approach for the(More)
A low computational power method is proposed for detecting actuators/sensors faults. Typical model-based fault detection units for multiple sensor faults, require a bank of observers (these can be either conventional observers of artificial intelligence based). The proposed control scheme uses an artificial intelligence approach for the development of the(More)
In order to alleviate interference and contention in a wireless network, we may exploit the existence of multiple orthogonal channels or time slots, thus achieving a substantial improvement in performance. In this paper, we study a joint transmission scheduling and power control problem that arises in wireless networks. The goal is to assign channels (or(More)
In this work, a Field Programmable Gate Array (FPGA)-based embedded software platform coupled with a software-based plant, forming a Hardware-In-the-Loop (HIL), is used to validate a systematic sensor selection framework. The systematic sensor selection framework combines multi-objective optimization, Linear-Quadratic-Gaussian (LQG) control, and the(More)