Learn More
The effects of fibroblast growth factors (FGFs) in vitro include the stimulation of mitogenesis in a variety of non-neuronal cell types and the promotion of the survival of various central and peripheral neuronal populations. The precise physiological role of FGFs in vivo is currently not known. As a step toward understanding the role of FGFs in the nervous(More)
Acidic and basic fibroblast growth factors (aFGF and bFGF, respectively) are expressed in high levels in adult central nervous system (CNS). We report the time course of developmental appearance and distribution of these factors and of two FGF receptors, FGFR-1 and FGFR-2, in the CNS of rats ranging in age from embryonic day 16 to adult. Immunohistochemical(More)
Peripheral nerve crush injury (PNCI) has been used for many years in adult animals to study central and peripheral changes related to regeneration across the injury site. While these adult animals experience full recovery with no neuronal cell loss following PNCI, it has been noted that the injury in perinatal animals is followed by retrograde neuronal cell(More)
The distribution in the rat nervous system of acidic and basic fibroblast growth factors (FGFs) was analysed by a combination of biochemical and anatomical methods. Acidic FGF (aFGF) was found to be present exclusively in specific neuronal populations, such as motor neurons and basal forebrain cholinergic neurons. Basic FGF (bFGF) was found in astrocytes(More)
The survival of developing motor neurons has long been known to depend on contact with target muscle. This observation caused an intensive search for motor neuron trophic factors. During that search, a surprisingly large number of factors, including neurotrophins, glia-derived neurotrophic factor, fibroblast growth factors, and ciliary neurotrophic factor(More)
  • 1