Learn More
Indinavir, a potent and specific inhibitor of human immunodeficiency virus protease, is undergoing clinical investigation for the treatment of acquired immunodeficiency syndrome. The studies described herein were designed to characterize the absorption, distribution, metabolism, and excretion of the drug in rats, dogs, and monkeys. Indinavir exhibited(More)
L-735,524, a potent and specific inhibitor of human immunodeficiency virus protease, is currently under investigation for the treatment of acquired immunodeficiency syndrome. The aqueous solubility of L-735,524 was pH-dependent, > 100 mg/ml at pH below 3.5 and 0.03 mg/ml at pH 6. When L-735,524 was given orally as a suspension in 0.5% methocel (pH 6.5) at(More)
A high-performance liquid chromatographic method coupled with liquid-liquid sample extraction and ultraviolet detection has been developed for the quantification of L-735,524 (I), a potent, highly selective and orally bioavailable inhibitor of recombinant human immunodeficiency virus (HIV) protease in rat, dog and monkey plasma. The present method is(More)
We have addressed the key deficiency of noncovalent pyridinone acetamide thrombin inhibitor L-374,087 (1), namely, its modest half-lives in animals, by making a chemically stable 3-alkylaminopyrazinone bioisostere for its 3-sulfonylaminopyridinone core. Compound 3 (L-375,378), the closest aminopyrazinone analogue of 1, has comparable selectivity and(More)
L-754,394 is a potent and specific inhibitor of the HIV-1 encoded protease that is essential for the maturation of the infectious virus. The drug exhibited dose-dependent kinetics in all species studied (rat, dog and monkey); the apparent clearance decreased when the dose was increased. However, the dose-dependency cannot be explained by Michaelis-Menten(More)
Indinavir, a potent and specific inhibitor of human immunodeficiency virus protease, is used for the treatment of AIDS. This study was designed to investigate the sex-related differences in kinetics and metabolism of indinavir in rats, dogs, and monkeys to support the toxicity studies. When given intravenously, indinavir was cleared rapidly in a polyphasic(More)
Early studies in these laboratories of peptidomimetic structures containing a basic P1 moiety led to the highly potent and selective thrombin inhibitors 2 (Ki = 5.0 nM) and 3 (Ki = 0.1 nM). However, neither attains significant blood levels upon oral administration to rats and dogs. With the aim of improving pharmacokinetic properties via a more diverse(More)
Replacement of the amidinopiperidine P1 group of 3-benzylsulfonylamino-6-methyl-2-pyridinone acetamide thrombin inhibitor L-373,890 (2) with a mildly basic 5-linked 2-amino-6-methylpyridine results in an equipotent compound L-374,087 (5, Ki = 0.5 nM). Compound 5 is highly selective for thrombin over trypsin, is efficacious in the rat ferric chloride model(More)
P450 complex formation and the unusual pharmacokinetics of methylenedioxyphenyl HIV protease inhibitors were examined by in vitro studies using human and rat liver microsomes and by in vivo oral dosing studies. In vitro spectral studies indicated that the formation of a P450 complex having absorbance maxima at 425 and 456 nm was time and concentration(More)