Learn More
The unfolded protein response (UPR) controls the levels of molecular chaperones and enzymes involved in protein folding in the endoplasmic reticulum (ER). We recently isolated ATF6 as a candidate for mammalian UPR-specific transcription factor. We report here that ATF6 constitutively expressed as a 90-kDa protein (p90ATF6) is directly converted to a 50-kDa(More)
When unfolded proteins accumulate in the endoplasmic reticulum (ER), transcription of glucose-regulated proteins (GRPs) representing ER-resident molecular chaperones is markedly induced via the unfolded protein response (UPR) pathway. In contrast to recent progress in the analysis of yeast UPR, both cis-acting elements and transactivators responsible for(More)
Transcription of genes encoding molecular chaperones and folding enzymes in the endoplasmic reticulum (ER) is induced by accumulation of unfolded proteins in the ER. This intracellular signaling, known as the unfolded protein response (UPR), is mediated by the cis-acting ER stress response element (ERSE) in mammals. In addition to ER chaperones, the(More)
Olfactory sensory neurons detect a large variety of odor molecules and send information through their axons to the olfactory bulb, the first site for the processing of olfactory information in the brain. The axonal connection is precisely organized so that signals from 1000 different types of odorant receptors are sorted out in 1800 glomeruli in the mouse(More)
Neurons are generated from neural progenitor cells not only during development but also in the mature brain. To develop an in vivo system for analyzing neurogenesis, we generated transgenic mice expressing green fluorescent protein (GFP) under the control of regulatory regions of the nestin gene. GFP fluorescence was observed in areas and during periods(More)
BACKGROUND Accumulation of unfolded proteins in the endoplasmic reticulum (ER) triggers the transcriptional induction of molecular chaperones and folding enzymes localized in the ER. Thus, eukaryotic cells possess an intracellular signalling pathway from the ER to the nucleus, called the unfolded protein-response (UPR) pathway. In Saccharomyces cerevisiae,(More)
Capecitabine (N4-pentyloxycarbonyl-5'-deoxy-5-fluorocytidine) is a novel oral fluoropyrimidine carbamate, which is converted to 5-fluorouracil (5-FU) selectively in tumours through a cascade of three enzymes. The present study investigated tissue localisation of the three enzymes in humans, which was helpful for us to design the compound. Carboxylesterase(More)
In eukaryotic cells, the accumulation of unfolded proteins in the endoplasmic reticulum (ER) triggers a signaling pathway from the ER to the nucleus. Several yeast mutants defective in this pathway map to the ERN1 gene, which protects cells from lethal consequences of stress by signaling for increased expression of BiP and other ER proteins. ERN1 encodes a(More)
The KAR2 gene of Saccharomyces cerevisiae codes for an essential chaperone protein (BiP) that is localized in the lumen of the endoplasmic reticulum (ER). The high basal rate of transcription of KAR2 is increased transiently by heat shock: prolonged induction occurs when unfolded proteins accumulate in the ER. Three cis-acting elements in the KAR2 promoter(More)
Zone-to-zone projection of olfactory and vomeronasal sensory axons underlies the topographic and functional mapping of chemoreceptor expression zones of the sensory epithelia onto zonally arranged glomeruli in the main and accessory olfactory bulbs. Here we identified OCAM (R4B12 antigen), an axonal surface glycoprotein expressed by subsets of both(More)