K. Ishihara

Learn More
It is desirable to minimize the use of rare or toxic metals for oxidative reactions in the synthesis of pharmaceutical products. Hypervalent iodine compounds are environmentally benign alternatives, but their catalytic use, particularly for asymmetric transformations, has been quite limited. We report here an enantioselective oxidative cycloetherification(More)
Polycyclic bio-active natural products that contain halogen atoms have been isolated from a number of different marine organisms. The biosynthesis of these natural products appears to be initiated by an electrophilic halogenation reaction at a carbon-carbon double bond via a mechanism that is similar to a proton-induced olefin polycyclization. Enzymes such(More)
BACKGROUND The field of structural dynamics of cytoskeletons in living cells is gathering wide interest, since better understanding of cytoskeleton intracellular organization will provide us with not only insights into basic cell biology but may also enable development of new strategies in regenerative medicine and cancer therapy, fields in which(More)
The diverse biological activities of tocopherols and their analogs have inspired considerable interest in the development of routes for their efficient asymmetric synthesis. Here, we report that chiral ammonium hypoiodite salts catalyze highly chemo- and enantioselective oxidative cyclization of γ-(2-hydroxyphenyl)ketones to 2-acyl chromans bearing a(More)
This review focuses on the development of dynamic ammonium salt catalysis for selective organic transformations conducted in our laboratory since 2002. Several important concepts in designing of catalysts are described with some examples. In particular, the practical synthesis of chiral 1,1'-binaphthyl-2,2'-disulfonic acid (BINSA) and its application in(More)
  • 1