Learn More
In this paper we theoretically study refraction effects in the 2D square-like Archimedean photonic crystals (3(2), 4, 3, 4) and (4, 8(2)) made of dielectric rods in air. In addition, we investigated a band isotropy and band gap structure in these lattices. We compared the square and square-like structures as well, their refraction characteristics, zone(More)
Engineering of a refractive index profile is a powerful method for controlling electromagnetic fields. In this paper, we investigate possible realization of isotropic gradient refractive index media at optical frequencies using two-dimensional graded photonic crystals. They consist of dielectric rods with spatially varying radii and can be homogenized in(More)
We introduce a novel method to calculate the local dispersion relation in photonic crystal waveguides, based on the finite-difference time-domain simulation and filter diagonalization method (FDM). In comparison with the spatial Fourier transform method (SFT), the highly local dispersion calculations based on FDM are considerably superior and pronounced.(More)
Graphene is emerging as a promising material for plasmonics applications due to its strong light-matter interactions, most of which are theoretically predicted but not yet experimentally realized. Therefore, the integration of plasmonic nanoparticles to create metal nanoparticle/graphene composites enables numerous phenomena important for a range of(More)
Lead sulfide quantum dots represent an emerging photovoltaic absorber material. While their associated optical qualities are true for the colloidal solution phase, they change upon processing into thin-films. A detailed view to the optical key-parameters during solid-film development is presented and the limits and outlooks for this versatile and promising(More)
Recently metallic two and three dimensional photonic crystals ͑PCs͒ have been studied with the focus on using such structures in incandescent lighting and thermal photovoltaic applications. They exhibit a metallic band gap for low frequencies as well as structural band gaps. Especially the metallic band gap allows to block the infrared transmission(More)
We demonstrate for the first time a fast and easy nanoimprint lithography (NIL) based stacking process of negative index structures like fishnet and Swiss-cross metamaterials. The process takes a few seconds, is cheap and produces three-dimensional (3D) negative index materials (NIMs) on a large area which is suitable for mass production. It can be(More)
The design of electromagnetic invisibility cloaks is based on singular mappings prescribing zero or infinite values for material parameters on the inner surface of the cloak. Since this is only approximately feasible, an asymptotic analysis is necessary for a sound description of cloaks. We adopt a simple and effective approach for analyzing electromagnetic(More)
This paper discusses the fundamentals, applications, potential, limitations, and future perspectives of polarized light reflection techniques for the characterization of materials and related systems and devices at the nanoscale. These techniques include spectroscopic ellipsometry, polarimetry, and reflectance anisotropy. We give an overview of the various(More)