Learn More
Circadian clocks can be reset by light stimulation. To investigate the mechanism of this phase shifting, the effects of light pulses on the protein and messenger RNA products of the Drosophila clock gene period (per) were measured. Photic stimuli perturbed the timing of the PER protein and messenger RNA cycles in a manner consistent with the direction and(More)
Extensive work on the maturation of lagging strands during the replication of simian virus 40 DNA suggests that the initiator RNA primers of Okazaki fragments are removed by the combined action of two nucleases, RNase HI and Fen1, before the Okazaki fragments join. Despite the well established in vitro roles of these two enzymes, genetic analyses in yeast(More)
The Drosophila CLOCK (dCLOCK) and CYCLE (CYC) (also referred to as dBMAL1) proteins are members of the basic helix-loop-helix PAS (PER-ARNT-SIM) superfamily of transcription factors and are required for high-level expression of the circadian clock genes period (per) and timeless (tim). Several lines of evidence indicate that PER, TIM, or a PER-TIM(More)
In Drosophila melanogaster four circadian clock proteins termed PERIOD (PER), TIMELESS (TIM), dCLOCK (dCLK), and CYCLE (CYC/dBMAL1) function in a transcriptional feedback loop that is a core element of the oscillator mechanism. dCLK and CYC are members of the basic helix-loop-helix (bHLH)/PAS (PER-ARNT-SIM) superfamily of transcription factors and are(More)
The Clock gene plays an essential role in the manifestation of circadian rhythms (approximately 24 h) in mice and is a member of the basic helix-loop-helix (bHLH) PER-ARNT-SIM (PAS) superfamily of transcription factors. Here we report the characterization of a novel Drosophila bHLH-PAS protein that is highly homologous to mammalian CLOCK. (Similar findings(More)
In order to gain insights into the structural basis of the multifunctional Dna2 enzyme involved in Okazaki fragment processing, we performed biochemical, biophysical and genetic studies to dissect the domain structure of Dna2. Proteolytic digestion of Dna2 using subtilisin produced a 127 kDa polypeptide that lacked the 45 kDa N-terminal region of Dna2.(More)
Two neolignan compounds, magnolol (5,5'-diallyl-2,2'-dihydroxybiphenyl, 1) and honokiol (5,5'-diallyl-2,4'-dihydroxybiphenyl, 2), were isolated from the stem bark of Magnolia obovata and evaluated for antifungal activity against various human pathogenic fungi. Compound 1 and 2 showed significant inhibitory activities against Trichophyton mentagrophytes,(More)
Two new furanolignans (3, 5), together with three known lignans (1, 2, 4), were isolated from the stem of Lindera obtusiloba (Lauraceae). The structures of the compounds were determined as actifolin (1), pluviatilol (2), 5,6-dihydroxymatairesinol (3), (+)-syringaresinol (4), and (+)-9'-O-trans-feruloyl-5,5'-dimethoxylariciresinol (5) on the basis of(More)
The limonoid triterpene, obacunone, was found to enhance the cytotoxicity of vincristine against L1210 cells by approximately 10-fold. Further, it was found that the cytotoxicity of other microtubule inhibitors such as vinblastine and taxol in drug-sensitive KB-3-1 cells as well as in multidrug-resistant KB-V1 cells was enhanced greatly in the presence of(More)
The cholesterol-lowering effects of tangerine peel extract and a mixture of two citrus flavonoids were tested. Male rats were fed a 1 g/100 g high-cholesterol diet for 42 d with supplements of either tangerine-peel extract or a mixture of naringin and hesperidin (0.5 g/100 g) to study the effects of plasma and hepatic lipids, hepatic enzyme activities, and(More)