Learn More
The cannabinoid receptor 1 (CB1) is a G protein-coupled receptor primarily expressed in brain tissue that has been implicated in several disease states. CB1 allosteric compounds, such as ORG27569, offer enormous potential as drugs over orthosteric ligands, but their mechanistic, structural, and downstream effects upon receptor binding have not been(More)
Activation of a G-protein-coupled receptor involves changes in specific microdomain interactions within the transmembrane region of the receptor. Here, we have focused on the role of L207, proximal to the DRY motif of the human cannabinoid receptor 1 in the interconversion of the receptor resting and active states. Ligand binding analysis of the mutant(More)
The cannabinoid type-1 (CB(1)) receptor is a G protein-coupled receptor that binds the main active ingredient of marijuana, Δ(9)-tetrahydrocannabinol, and has been implicated in several disease states, including drug addiction, anxiety, depression, obesity, and chronic pain. In the two decades since the discovery of CB(1), studies at the molecular level(More)
The cannabinoid receptor 1 (CB1), a member of the class A G protein-coupled receptor family, is expressed in brain tissue where agonist stimulation primarily activates the pertussis toxin-sensitive inhibitory G protein (G(i)). Ligands such as CP55940 ((1R,3R,4R)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3- hydroxypropyl)cyclohexan-1-ol) and(More)
The coexistence of distinct metallic and insulating electronic phases within the same sample of a perovskite manganite, such as La(1-x-y)Pr(y)Ca(x)MnO3, presents researchers with a tool for tuning the electronic properties in materials. In particular, colossal magnetoresistance in these materials--the dramatic reduction of resistivity in a magnetic(More)
The seven transmembrane alpha-helices of G protein-coupled receptors (GPCRs) are the hallmark of this superfamily. Intrahelical interactions are critical to receptor assembly and, for the GPCR subclass that binds small molecules, ligand binding. Most research has focused on identifying the ligand binding pocket within the helical bundle, whereas the role of(More)
G protein-coupled receptors (GPCRs) are the major transducers of external stimuli and key therapeutic targets in many pathological conditions. When activated by different ligands, one receptor can elicit multiple signalling cascades that are mediated by G proteins or β-arrestin, a process defined as functional selectivity or ligand bias. However, the(More)
The cannabinoid receptor 1 (CB1), a member of the class A G-protein-coupled receptor (GPCR) family, possesses an observable level of constitutive activity. Its activation mechanism, however, has yet to be elucidated. Previously we discovered dramatic changes in CB1 activity due to single mutations; T3.46A, which made the receptor inactive, and T3.46I and(More)
Activation of G protein-coupled receptors results in multiple waves of signaling that are mediated by heterotrimeric G proteins and the scaffolding proteins β-arrestin 1/2. Ligands can elicit full or subsets of cellular responses, a concept defined as ligand bias or functional selectivity. However, our current understanding of β-arrestin-mediated signaling(More)