K Christopher Garcia

Learn More
Store-operated Ca(2+) channels activated by the depletion of Ca(2+) from the endoplasmic reticulum (ER) are a major Ca(2+) entry pathway in nonexcitable cells and are essential for T cell activation and adaptive immunity. After store depletion, the ER Ca(2+) sensor STIM1 and the CRAC channel protein Orai1 redistribute to ER-plasma membrane (PM) junctions,(More)
Synapses are asymmetric cellular adhesions that are critical for nervous system development and function, but the mechanisms that induce their formation are not well understood. We have previously identified thrombospondin as an astrocyte-secreted protein that promotes central nervous system (CNS) synaptogenesis. Here, we identify the neuronal(More)
A major obstacle for successful axon regeneration in the adult central nervous system (CNS) arises from inhibitory molecules in CNS myelin, which signal through a common receptor complex on neurons consisting of the ligand-binding Nogo-66 receptor (NgR) and two transmembrane coreceptors, p75 and LINGO-1. However, p75 expression is only detectable in(More)
Wnts are lipid-modified morphogens that play critical roles in development principally through engagement of Frizzled receptors. The 3.25 angstrom structure of Xenopus Wnt8 (XWnt8) in complex with mouse Frizzled-8 (Fz8) cysteine-rich domain (CRD) reveals an unusual two-domain Wnt structure, not obviously related to known protein folds, resembling a "hand"(More)
The central event in the cellular immune response to invading microorganisms is the specific recognition of foreign peptides bound to major histocompatibility complex (MHC) molecules by the alphabeta T cell receptor (TCR). The x-ray structure of the complete extracellular fragment of a glycosylated alphabeta TCR was determined at 2.5 angstroms, and its(More)
Axon regeneration failure in the adult mammalian CNS is attributed in part to the inhibitory nature of CNS myelin. Three myelin-associated, structurally distinct proteins, Nogo, myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein, have been implicated in this inhibition. Neuronal Nogo receptor (NgR) binds to each of the three inhibitors(More)
Nerve growth factor engages two structurally distinct transmembrane receptors, TrkA and p75, which have been proposed to create a "high-affinity" NGF binding site through formation of a ternary TrkA/NGF/p75 complex. To define a structural basis for the high-affinity site, we have determined the three-dimensional structure of a complete extracellular domain(More)
Exciting breakthroughs in the last two years have begun to elucidate the structural basis of cellular immune recognition. Crystal structures have been determined for full-length and truncated forms of alpha beta T cell receptor (TCR) heterodimers, both alone and in complex with their peptide-MHC (pMHC) ligands or with anti-TCR antibodies. In addition, a(More)
T cell receptor crossreactivity with different peptide ligands and biased recognition of MHC are coupled features of antigen recognition that are necessary for the T cell's diverse functional repertoire. In the crystal structure between an autoreactive, EAE T cell clone 172.10 and myelin basic protein (1-11) presented by class II MHC I-Au, recognition of(More)
All complexes of T cell receptors (TCRs) bound to peptide-major histocompatibility complex (pMHC) molecules assume a stereotyped binding 'polarity', despite wide variations in TCR-pMHC docking angles. However, existing TCR-pMHC crystal structures have failed to show broadly conserved pairwise interaction motifs. Here we determined the crystal structures of(More)