Learn More
Recently, a classification system was proposed for rotaviruses in which all the 11 genomic RNA segments are used (Matthijnssens et al. in J Virol 82:3204–3219, 2008). Based on nucleotide identity cut-off percentages, different genotypes were defined for each genome segment. A nomenclature for the comparison of complete rotavirus genomes was considered in(More)
The development of rotavirus vaccines that are based on heterotypic or serotype-specific immunity has prompted many countries to establish programs to assess the disease burden associated with rotavirus infection and the distribution of rotavirus strains. Strain surveillance helps to determine whether the most prevalent local strains are likely to be(More)
Rotaviruses are important enteric pathogens of humans and animals. Group A rotaviruses (GARVs) account for up to 1 million children deaths each year, chiefly in developing countries and human vaccines are now available in many countries. Rotavirus-associated enteritis is a major problem in livestock animals, notably in young calves and piglets. Early in the(More)
In April 2008, a nucleotide-sequence-based, complete genome classification system was developed for group A rotaviruses (RVs). This system assigns a specific genotype to each of the 11 genome segments of a particular RV strain according to established nucleotide percent cutoff values. Using this approach, the genome of individual RV strains are given the(More)
Enteric caliciviruses (noroviruses and sapoviruses) are responsible for the majority of non-bacterial gastroenteritis in humans of all age groups. Analysis of the polymerase and capsid genes has provided evidence for a huge genetic diversity, but the understanding of their ecology is limited. In this study, we investigated the presence of porcine enteric(More)
Porcine rotavirus strains (PoRVs) bearing human-like VP4 P[6] gene alleles were identified. Genetic characterization with either PCR genotyping or sequence analysis allowed to determine the VP7 specificity of the PoRVs as G3, G4, G5 and G9, and the VP6 as genogroup I, that is predictive of a subgroup I specificity. Sequence analysis of the VP8*(More)
In 2016, the order Mononegavirales was emended through the addition of two new families (Mymonaviridae and Sunviridae), the elevation of the paramyxoviral subfamily Pneumovirinae to family status (Pneumoviridae), the addition of five free-floating genera (Anphevirus, Arlivirus, Chengtivirus, Crustavirus, and Wastrivirus), and several other changes at the(More)
We describe the emergence of serotype G12 rotaviruses (67 [6.9%] of 971 specimens tested) among children hospitalized with rotavirus gastroenteritis in Hungary during 2005. These findings are consistent with recent reports of the possible global spread and increasing epidemiologic importance of these strains, which may have implications for current(More)
Rotavirus-associated enteritis has been reported in pheasants, but there is no information on the genetic/antigenic features of pheasant rotaviruses. In this study, we sequenced the VP7-encoding genome segment of three pheasant rotavirus strains detected during 2008 in Hungary. The full-length genome segment was 1,070 bp long, while the open reading frame(More)
Whether animals may act as reservoirs for human caliciviruses is unclear. By sequence analysis of a short fragment of the RNA-dependent RNA polymerase (RdRp) region, porcine sapovirus (SaV) strains that genetically resemble human SaVs have been detected in piglets, but more-informative sequences (capsid gene) were not available for a precise(More)