Learn More
To understand the nature of the transmission process of excitation-contraction (EC) coupling, the effects of the anion perchlorate were investigated on the voltage sensor (dihydropyridine receptor, DHPR) and the Ca release channel (ryanodine receptor, RyR) of the sarcoplasmic reticulum (SR). The molecules, from rabbit skeletal muscle, were either separated(More)
In vertebrate skeletal muscle, the voltage-dependent mechanism of rapid sarcoplasmic reticulum (SR) Ca2+ release, commonly referred to as excitation-contraction (EC) coupling, is believed to be mediated by physical interaction between the transverse (T)-tubule voltage-sensing dihydropyridine receptor (DHPR) and the SR ryanodine receptor (RyR)/Ca2+ release(More)
The recognition between G protein and cognate receptor plays a key role in specific cellular responses to environmental stimuli. Here we explore specificity in receptor-G protein coupling by taking advantage of the ability of the 5-hydroxytryptamine1B (5-HT1B) receptor to discriminate between G protein heterotrimers containing Galphai1 or Galphat. Gi1 can(More)
  • 1