K. A. Osinga

Learn More
To determine how microbody enzymes enter microbodies, we are studying the genes for cytosolic and glycosomal (microbody) isoenzymes in Trypanosoma brucei. We have found three genes (A, B and C) coding for phosphoglycerate kinase (PGK) in a tandem array in T. brucei. Gene B codes for the cytosolic and gene C for the glycosomal isoenzyme. Genes B and C are(More)
Trypanosoma brucei contains two isoenzymes for glyceraldehyde-phosphate dehydrogenase (GAPDH); one enzyme resides in a microbody-like organelle, the glycosome, the other one is found in the cytosol. We show here that the glycosomal enzyme is encoded by two tandemly linked genes of identical sequence. These genes code for a protein of 358 amino acids, with a(More)
The ploidy of trypanosomes has until now remained undetermined, although isoenzyme studies and direct measurements of DNA content and complexity suggest diploidy. Direct cytogenetic analysis is not possible, because the chromosomes do not condense at any stage of the cell cycle. We now present evidence from analysis of restriction site polymorphisms in and(More)
To determine how microbody enzymes enter microbodies, we are studying the genes for glycosomal (microbody) enzymes in Trypanosoma brucei. Here we present our results for triosephosphate isomerase (TIM), which is found exclusively in the glycosome. We found a single TIM gene without introns, having one major polyadenylated transcript of 1500 nucleotides with(More)
We have studied splicing of precursors to the large ribosomal RNA and processing of the excised intron in yeast mitochondria using primer extension with reverse transcriptase and electron microscopy. Structural features of the following intermediates are described: first, a linear RNA carrying a 5'-terminal G that is not encoded in mitochondrial DNA;(More)
By S1 nuclease mapping we have located the intervening sequence in the large ribosomal RNA gene of Saccharomyces cerevisiae omega+ strains 570 bp from the 3' end of the rRNA gene. No intervening sequence was detected at this position in S. carlsbergensis, but the sequences of the mature 21S rRNAs of these two strains appear to be identical in this region.(More)
The yeast mitochondrial genes coding for cytochrome c oxidase subunit I ( COX1 ) and the ATPase subunits 8 and 6 are organized in one transcription unit. Precise mapping of RNA termini with S1 nuclease and primer extension analysis shows that the 3' end of the COX1 mRNA and the 5' end of the ATPase precursor RNA are juxtaposed within a conserved dodecamer(More)
We have examined the initiation of transcription of the mitochondrial genes for ribosomal RNA (rRNA) in the yeast Kluyveromyces lactis and show that these are transcribed independently from individual promoters. The mature large rRNA contains a 5' di- or triphosphate end which can be labelled in vitro with [alpha-32P]GTP using guanylyltransferase and this(More)
In Trypanosoma brucei, a major pathogenic protozoan parasite of Central Africa, a number of glycolytic enzymes present in the cytosol of other organisms are uniquely segregated in a microbody-like organelle, the glycosome, which they are believed to reach post-translationally after being synthesized by free ribosomes in the cytosol. In a search for possible(More)
The DNA sequence around the beginning of the genes coding for the large and small ribosomal RNAs in yeast mitochondria has been established. In order to determine the 5'-end points of the ribosomal RNAs, DNA fragments were labelled in vitro at a restriction site within each gene and hybridized with ribosomal RNA. The hybrids were then treated with S1(More)