Learn More
Fish play a key role in the trophic dynamics of lakes. With climate warming, complex changes in fish assemblage structure may be expected owing to direct effects of temperature and indirect effects operating through eutrophication, water level changes, stratification and salinisation. We reviewed published and new long-term (10–100 years) fish data series(More)
Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains(More)
Using sediment traps, we aimed to elucidate the temporal and spatial variations in sediment fluxes in large and shallow Lake Peipsi, over the May to October 2011 period, and analyze the factors behind those variations. The effects of weather factors (mean and maximum wind velocity, water level and water temperature) on sediment resuspension and the(More)
Over the last 3-4 decades, Lake Peipsi water (sampling site A, middle part of the lake, and site B, northern part) has experienced a statistically significant increase of bicarbonate, pH, chemical oxygen demand, nitrate (and nitrite in site B), due to combination of climate change and eutrophication. By photochemical modelling, we predicted a statistically(More)
Citizen science projects have a long history in ecological studies. The research usefulness of such projects is dependent on applying simple and standardized methods. Here, we conducted a citizen science project that involved more than 3500 Swedish high school students to examine the temperature difference between surface water and the overlying air (Tw-Ta)(More)
  • 1