Learn More
The delta subunit of the epithelial sodium channel (δENaC) is a member of the ENaC/degenerin family of ion channels. δENaC is distinct from the related α-, β- and γENaC subunits, known for their role in sodium homeostasis and blood pressure control, as δENaC is expressed in brain neurons and activated by external protons. COMMD1 (copper metabolism Murr1(More)
Elevated levels of plasma low density lipoprotein (LDL)-cholesterol, leading to familial hypercholesterolemia, are enhanced by mutations in at least three major genes, the LDL receptor (LDLR), its ligand apolipoprotein B, and the proprotein convertase PCSK9. Single point mutations in PCSK9 are associated with either hyper- or hypocholesterolemia.(More)
BACKGROUND The epithelial sodium channel (ENaC) is an integral component of the pathway for Na(+) absorption in epithelial cells. The ubiquitin ligases Nedd4 and Nedd4-2 bind to ENaC and decrease its activity. Conversely, Serum- and Glucocorticoid regulated Kinase-1 (SGK1), a downstream mediator of aldosterone, increases ENaC activity. This effect is at(More)
Ovarian cancer (OVC) is the fourth leading cause of cancer mortality among women in Europe and the United States. Its early detection is difficult due to the lack of specificity of clinical symptoms. Unfortunately, late diagnosis is a major contributor to the poor survival rates for OVC, which can be attributed to the lack of specific sets of markers. Aside(More)
Annexin A2 (AnxA2) was reported to be an extracellular endogenous inhibitor of proprotein convertase subtilisin kexin type 9 (PCSK9) activity on cell-surface LDL receptor degradation. In this study, we investigated the effect of silencing the expression of AnxA2 and PCSK9 in HepG2 and Huh7 cells to better define the role of AnxA2 in PCSK9 regulation. AnxA2(More)
The epithelial sodium channel (ENaC) plays an important role in controlling Na⁺ homeostasis, extracellular fluid volume, and blood pressure. Copper metabolism Murr1 domain-containing protein 1 (COMMD1) interacts with ENaC and downregulates ENaC. COMMD1 belongs to the COMMD family consisting of COMMD1-10, and all COMMD family members share a C-terminal COMM(More)
PACE4 plays an important role in the progression of prostate cancer and is an attractive target for the development of novel inhibitor-based tumor therapies. We previously reported the design and synthesis of a novel, potent, and relatively selective PACE4 inhibitor known as a Multi-Leu (ML) peptide. In the present work, we examined the ML peptide through(More)
The overexpression as well as the critical implication of the proprotein convertase PACE4 in prostate cancer progression has been previously reported and supported the development of peptide inhibitors. The multi-Leu peptide, a PACE4-specific inhibitor, was further generated and its capability to be uptaken by tumor xenograft was demonstrated with regard to(More)
Protein C, a secretory vitamin K-dependent anticoagulant serine protease, inactivates factors Va/VIIIa. It is exclusively synthesized in liver hepatocytes as an inactive zymogen (proprotein C). In humans, thrombin cleavage of the propeptide at PR221↓ results in activated protein C (APC; residues 222-461). However, the propeptide is also cleaved by a(More)
PACE4, one of the seven members of the proprotein convertase family, plays an important role in the progression of prostate cancer. Therefore, its inhibition has become an attractive target to develop new therapies against this disease. Recently, we have developed a highly potent and selective PACE4 inhibitor, known as the multi-Leu peptide with the(More)