Jyrki Viidanoja

Learn More
The methodology of solid phase microextraction (SPME) with O-(2,3,4,5,6)-pentafluorobenzylhydroxylamine hydrochloride (PFBHA) on-fiber derivatization for the determination of carbonyls has been applied to the photo-oxidation of benzene and toluene carried out in the EUPHORE chambers. This work focuses on the results obtained for a number of highly reactive(More)
Chemical standards for positive ion mode electrospray ionization ion mobility spectrometry/mass spectrometry (ESI(+)-IMS/MS) are suggested. The low clustering tendency of tetraalkylammonium halides makes them ideal chemical standards for ESI(+)-IMS/MS. A homologous series of these compounds forms a useful external standard for instrument testing and(More)
An ion mobility spectrometer that can easily be installed as an intermediate component between a commercial triple-quadrupole mass spectrometer and its original atmospheric pressure ionization (API) sources was developed. The curtain gas from the mass spectrometer is also used as the ion mobility spectrometer drift gas. The design of the ion mobility(More)
Chemical composition of boundary layer aerosol over the Atlantic Ocean and at an Antarctic site A. Virkkula, K. Teinilä, R. Hillamo, V.-M. Kerminen, S. Saarikoski, M. Aurela, J. Viidanoja, J. Paatero, I. K. Koponen, and M. Kulmala Finnish Meteorological Institute, Erik Palménin aukio, 00 560, Helsinki, Finland Department Department of Chemistry, Laboratory(More)
The rate coefficients for the gas phase reaction of NO3 and OH radicals with a series of cycloalkanecarbaldehydes have been measured in purified air at 298 +/- 2 K and 760 +/- 10 Torr by the relative rate method using a static reactor equipped with long-path Fourier transform infrared (FT-IR) detection. The values obtained for the OH radical reactions (in(More)
This article presents the combination of an aspiration-type ion mobility spectrometer with a mass spectrometer. The interface between the aspiration ion mobility spectrometer and the mass spectrometer was designed to allow for quick mounting of the aspiration ion mobility spectrometer onto a Sciex API-300 triple quadrupole mass spectrometer. The developed(More)
Negative corona discharge atmospheric pressure chemical ionization (APCI) was used to investigate phenols with varying numbers of tert-butyl groups using ion mobility spectrometry-mass spectrometry (IMS-MS). The main characteristic ion observed for all the phenolic compounds was the deprotonated molecule [M-H](-). 2-tert-Butylphenol showed one main mobility(More)
  • 1