Learn More
Interleukin (IL)-17-producing T helper (Th17) cells play a critical role in the pathophysiology of several autoimmune disorders. The differentiation of Th17 cells requires the simultaneous presence of an unusual combination of cytokines: IL-6, a proinflammatory cytokine, and transforming growth factor (TGF) beta, an antiinflammatory cytokine. However, the(More)
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is an important hematopoietic growth factor and immune modulator. GM-CSF also has profound effects on the functional activities of various circulating leukocytes. It is produced by a variety of cell types including T cells, macrophages, endothelial cells and fibroblasts upon receiving immune stimuli.(More)
BACKGROUND Exposure to diisocyanates, a group of highly reactive, low-molecular-weight compounds, is a major cause of occupational asthma. In contrast to mouse models of atopic asthma, previous mouse models of diisocyanate-induced asthma have failed to show lung inflammation with characteristics of human disease. OBJECTIVE Our goal was to establish a(More)
The normal immunoregulatory mechanisms that maintain homeostasis in the intestinal mucosa, despite continuous provocation by environmental antigens, are jeopardized in inflammatory bowel diseases. Although previous studies have suggested that intestinal intraepithelial lymphocytes prevent spontaneous intestinal inflammation, there is limited knowledge about(More)
Although CD95L is required for T cell receptor (TCR)-induced cell death (TCR-ICD) in T helper 1 cells, the molecular mechanisms mediating TCR-ICD in Th2 cells are unknown. We found that death receptors were not involved in TCR-ICD of Th2 cells because blocking their cognate ligands had no effect on apoptosis of activated Th2 cells. Furthermore, we showed(More)
BACKGROUND Exposure to diisocyanates is a major cause of occupational asthma. We previously developed a novel mouse model of diisocyanate-induced asthma involving epicutaneous sensitization to hexamethylene diisocyanate (HDI) that demonstrates many features of the human disease, including airway eosinophilia and mucus hypersecretion. OBJECTIVE To(More)
Activation-induced cell death (AICD) has been demonstrated in T-cell hybridomas, immature thymocytes, and activated mature T cells. However, the molecular mechanisms of AICD and its physiological role in T-helper-cell differentiation remain uncertain. Recently, we have shown that Th1 and Th2 cells have distinct mechanisms of AICD. Our findings suggest that(More)
Plasmodium spp. parasites, the causative agents of malaria, survive and replicate in human hosts by modulating host protective immune responses. In a rodent model, malaria manifests as a severe splenomegaly, with infiltration of cells and lympho-proliferation as major contributing factors of the immunopathology. However, the cellular contents and the(More)
Unlike T cells restricted by major histocompatibility complex (MHC) class Ia or class II molecules, T cells restricted by MHC class I-like molecules demonstrate properties of both innate and adaptive immunity and are therefore considered innate-like lymphocytes (ILLs). ILLs are believed to have immunoregulatory functions, but their roles in autoimmunity and(More)