Jyoti J. Watters

Learn More
Intermittent hypoxia causes a form of serotonin-dependent synaptic plasticity in the spinal cord known as phrenic long-term facilitation (pLTF). Here we show that increased synthesis of brain-derived neurotrophic factor (BDNF) in the spinal cord is necessary and sufficient for pLTF in adult rats. We found that intermittent hypoxia elicited(More)
The nucleotide receptor P2X7 has been shown to modulate LPS-induced macrophage production of numerous inflammatory mediators. Although the C-terminal portion of P2X7 is thought to be essential for multiple receptor functions, little is known regarding the structural motifs that lie within this region. We show here that the P2X7 C-terminal domain contains(More)
Rapid effects of steroid hormones have been observed in neuronal cells for many years. We show here, that in the human neuroblastoma cell line SK-N-SH, the membrane impermeable conjugated 17beta-estradiol (E2BSA) activates mitogen activated protein kinase kinase (MAPKK or MEK) and induces the phosphorylation and activation of both ERK-1 and ERK-2 (mitogen(More)
Estrogen treatment of ovariectomized rats rapidly increases immunoreactivity for the phosphorylated form of the cAMP response element binding protein (CREB)in neurons of the preoptic area and the bed nucleus of the stria terminalis. These effects were detected within 15 minutes after estrogen exposure. Since the antisera used for these studies detect CREB(More)
Although microglial activation is associated with all CNS disorders, many of which are sexually dimorphic or age-dependent, little is known about whether microglial basal gene expression is altered with age in the healthy CNS or whether it is sex dependent. Analysis of microglia from the brains of 3-day (P3)- to 12-month-old male and female C57Bl/6 mice(More)
Estrogens are well known to exert antiinflammatory effects outside the central nervous system (CNS). They have also been shown to exert neuroprotective effects in the CNS after several types of injury, including neurodegeneration. However, the molecular mechanisms by which these effects occur remain unclear. Because microglial hyperactivation and their(More)
Acute intermittent hypoxia elicits a form of spinal, brain-derived neurotrophic factor (BDNF)-dependent respiratory plasticity known as phrenic long-term facilitation. Ligands that activate G(s)-protein-coupled receptors, such as the adenosine 2a receptor, mimic the effects of neurotrophins in vitro by transactivating their high-affinity receptor tyrosine(More)
Microglia play an important role in inflammatory diseases of the central nervous system (CNS). These cells have also been identified in brain neoplasms; however, as of yet their function largely remains unclear. More recent studies designed to characterize further tumor-associated microglia suggest that the immune effector function of these cells may be(More)
Extracellular nucleotides such as ATP are present in abundance at sites of inflammation and tissue damage, and these agents exert a potent modulatory effect on macrophage/monocyte function via the nucleotide receptor P2X(7). In this regard, after exposure to bacterial LPS, P2X(7) activation augments expression of the inducible nitric oxide (NO) synthase and(More)
Extracellular nucleotides regulate macrophage function via P2X nucleotide receptors that form ligand-gated ion channels. In particular, P2X7 activation is characterized by pore formation, membrane blebbing, and cytokine release. P2X7 is also linked to mitogen-activated protein kinases (MAPK) and Rho-dependent pathways, which are known to affect cytoskeletal(More)