Learn More
We have developed a simple, cost-effective, and scalable approach to fabricate a piezoelectric nanogenerator (NG) with stretchable and flexible characteristics using BaTiO3 nanotubes, which were synthesized by the hydrothermal method. The NG was fabricated by making a composite of the nanotubes with polymer poly(dimethylsiloxane) (PDMS). The peak(More)
We demonstrated a flexible strain sensor based on ZnSnO(3) nanowires/microwires for the first time. High-resolution transmission electron microscopy indicates that the ZnSnO(3) belongs to a rhombohedral structure with an R3c space group and is grown along the [001] axis. On the basis of our experimental observation and theoretical calculation, the(More)
  • Jyh Ming Wu, Kuan-Hsueh Chen, Yan Zhang, Zhong Lin Wang
  • 2013
We demonstrated a flexible self-powered system that consists of a strain sensor and a nanogenerator. An individual ZnSnO3 microbelt was bonded at its ends to a polyethylene terephthalate (PET) substrate to fabricate a strain sensor and a single-nanobelt nanogenerator. The sensor and nanogenerator were connected in series and packaged by a(More)
Vertically aligned single-crystal InSb nanowires were synthesized via the electrochemical method at room temperature. The characteristics of Fourier transform infrared spectrum revealed that in the syntheses of InSb nanowires, energy bandgap shifts towards the short wavelength with the occurrence of an electron accumulation layer. The current-voltage curve,(More)
We demonstrate a thermoelectric nanogenerator (NG) made from a single Sb-doped ZnO micro/nanobelt that generates an output power of about 1.94 nW under a temperature difference of 30 K between the two electrodes. A single Sb-doped ZnO microbelt was bonded at its ends on a glass substrate as a NG, which can give an output voltage of 10 mV and an output(More)
We demonstrated the first application of a pyroelectric nanogenerator as a self-powered sensor (or active sensor) for detecting a change in temperature. The device consists of a single lead zirconate titanate (PZT) micro/nanowire that is placed on a thin glass substrate and bonded at its two ends, and it is packaged by polydimethylsiloxane (PDMS). By using(More)
We demonstrated a single-microbelt nanogenerator first made using a ZnSnO(3) microbelt that generated an output power of ∼3 nW under a compressive and releasing strain of 0.8-1%. The ZnSnO(3) nanobelts/microbelts were synthesized using a vapor transfer process at 1173 K. The X-ray diffraction pattern shows that the microbelts belong to ZnSnO(3) with(More)
We demonstrated a single microwire photodetector first made using a VO2 microwire that exhibted high responsivity (Rλ) and external quantum efficiency (EQE) under varying light intensities. The VO2 nanowires/microwires were grown and attached on the surface of the SiO2/Si(100) substrate. The SiO2 layer can produce extremely low densities of long VO2(More)
A p-type ethanol sensor with a response time of approximately 8.3 s at room temperature was produced by SnO(2):Sb nanowires. The electrical properties of p-type SnO(2) nanowires are stable with a hole concentration of 1.544 x 10(17) cm(-3) and a field-effect mobility of 22 cm(2) V(-2) S(-1). X-ray photoelectron spectroscopy (XPS) and Hall measurement(More)
We are the first group to use a simple direct ultraviolet light (UV, λ=365 nm, I=76 mW cm(-2)) in a decomposition process to fabricate ZnO nanowires on a flexible substrate using a zinc acetylacetonate hydrate precursor in ambient air. ZnO nanocrystal (or nanowire) production only requires three to ten minutes. A field emission scanning electron microscopy(More)