Jyh-Ching Chou

Learn More
The protein delivery across cellular membranes or compartments is limited by low biomembrane permeability because of the hydrophobic characteristics of cell membranes. Usually the delivery processes utilize passive protein channels or active transporters to overcome the membrane impediment. In this report, we demonstrate that arginine-rich intracellular(More)
The delivery and expression of exogenous genes in plant cells have been of particular interest for plant research and biotechnology. Here, we present results demonstrating a simple DNA transfection system in plants. Short arginine-rich intracellular delivery peptide, a protein transduction domain, was capable of delivering plasmid DNA into living plant(More)
Antrodia cinnamomea is an expensive medicinal fungus that grows only inside the rotten trunk of Cinnamomum kanehirae . In vitro culture of A. cinnamomea fruiting body is difficult and, therefore, of value for further investigation. To study whether the fructification of A. cinnamomea is strain dependent in artificial media, we grew four different A.(More)
Indole-3-acetic acid (IAA)-amino acid amide conjugates have been found to be present in many plants, and they are proposed to function in the regulation of plant IAA metabolism in a variety of ways. IAA-amino acid conjugate hydrolase activities, and the genes that encode them, are therefore potentially important tools for modification of IAA metabolism,(More)
* Protein delivery across cellular membranes or compartments is primarily limited by low biomembrane permeability. * Many protein transduction domains (PTDs) have previously been generated, and covalently cross-linked with cargoes for cellular internalization. * An arginine-rich intracellular delivery (AID) peptide could rapidly deliver fluorescent proteins(More)
Crossing of the plasma membrane for all macromolecules without energy, receptors or any artificial methods was thought to be difficult. Our previous studies demonstrated that arginine-rich intracellular delivery (AID) peptides are able to deliver macromolecules, such as proteins, RNAs and DNAs, into either animal or plant cells. Cellular internalization(More)
The Litchi (Litchi chinensis) fruit products possess rich amounts of flavanoids and proanthocyanidins. Its pericarp has been shown to inhibit breast and liver cancer cell growth. However, the anticolorectal cancer effect of Litchi seed extract has not yet been reported. In this study, the effects of polyphenol-rich Litchi seed ethanol extract (LCSP) on the(More)
Protein transduction domains (PTDs) are small peptides with a high content of basic amino acids, and they are responsible for cellular uptake. Many PTDs, including arginine-rich intracellular delivery (AID) peptides, have been shown to transport macromolecules across membranes and into cells. In this study, we demonstrated for the first time that AID(More)
Seven antifeedant sesquiterpene lactones (STLs), 4,5-dihydroniveusin A, argophyllin B, argophyllin A, 15-hydroxy-3-dehydrodesoxytifruticin, niveusin B, 1,2-anhydridoniveusin A, and an unidentified epoxide, in cultivated sunflower (Helianthus annuus L.) have been quantified by a highperformance thin-layer chromatography and UV-reflectance scanning(More)
Indole-3-acetyl-L-aspartic acid (IAA-Asp) is a natural product in many plant species and plays many important roles in auxin metabolism and plant physiology. IAA-Asp hydrolysis activity is, therefore, believed to affect plant physiology through changes in IAA metabolism in plants. We applied a newly discovered technique, arginine-rich intracellular delivery(More)