Justyna Rzepecka

Learn More
Parasitic nematodes typically modulate T-cell reactivity, primarily during the chronic phase of infection. We analyzed the role of CD4-positive (CD4+) T effector (T(eff)) cells and regulatory T (T(reg)) cells derived from mice chronically infected with the intestinal nematode Heligmosomoides polygyrus. Different CD4+ T-cell subsets were transferred into(More)
Helminth infections are commonly associated with a Th2 immune response, yet only a few parasite molecules involved in triggering such immune responses have been identified. Here, we describe the Th2-skewing property of calreticulin of Heligmosomoides polygyrus (HpCRT). HpCRT is a secreted protein most abundantly expressed by tissue invasive larvae (L4).(More)
OBJECTIVE Among many survival strategies, parasitic worms secrete molecules that modulate host immune responses. One such product, ES-62, is protective against collagen-induced arthritis (CIA), a model of rheumatoid arthritis (RA). Since interleukin-17 (IL-17) has been reported to play a pathogenic role in the development of RA, this study was undertaken to(More)
We previously demonstrated inhibition of ovalbumin-induced allergic airway hyper-responsiveness in the mouse using ES-62, a phosphorylcholine-containing glycoprotein secreted by the filarial nematode, Acanthocheilonema viteae. This inhibition correlated with ES-62-induced mast cell desensitisation, although the degree to which this reflected direct(More)
Parasitic nematodes are constantly exposed to the immune effector mechanisms of their hosts. One strategy of the worms to cope with these defence reactions is the secretion of modulatory proteins that down-regulate cell-mediated immune responses. We analysed the proliferation of mesenteric lymph node cells of mice infected with Heligmosomoides polygyrus and(More)
In spite of increasing evidence that parasitic worms may protect humans from developing allergic and autoimmune diseases and the continuing identification of defined helminth-derived immunomodulatory molecules, to date no new anti-inflammatory drugs have been developed from these organisms. We have approached this matter in a novel manner by synthesizing a(More)
Primary infection with Heligmosomoides polygyrus in some strains of mice is chronic although fast responder mouse strains eliminate the parasite in a short period of time. The reason for the differences is unknown. In this study apoptosis, proliferation, IL-2 and IL-6 production of mesenteric lymph node (MLN) and spleen cells in vitro from fast (FVB) and(More)
There is growing evidence that helminth infections might suppress allergic responses by mechanisms potentially involving regulatory T lymphocytes, cytokines, helminth molecules and polyclonal IgE. Heligmosomoides polygyrus infection in mice is associated with reduced local and systemic immune responses, thus providing an excellent model to study the(More)
Sepsis is one of the most challenging health problems worldwide. Here we found that phagocytes from patients with sepsis had considerable upregulation of Toll-like receptor 4 (TLR4) and TLR2; however, shock-inducing inflammatory responses mediated by these TLRs were inhibited by ES-62, an immunomodulator secreted by the filarial nematode Acanthocheilonema(More)
ES-62, a glycoprotein secreted by the filarial nematode Acanthocheilonema viteae, exhibits anti-inflammatory properties by virtue of covalently attached phosphorylcholine moieties. Screening of a library of ES-62 phosphorylcholine-based small molecule analogues (SMAs) revealed that two compounds, termed 11a and 12b, mirrored the helminth product both in(More)