Learn More
The refractive power of a lens is determined largely by its surface curvatures and the refractive index of its medium. These properties can also be used to control the sharpness of focus and hence the image quality. One of the most effective ways of doing this is with a gradient index. Eye lenses of all species, thus far, measured, are gradient index (GRIN)(More)
The lens, a major optical component of the eye, has a gradient refractive index, which is required to provide sufficient refractive power and image quality. The refractive index variations across the lens are dependent on the distributions and concentrations of the varying protein classes. In this study, we present the first measurements of the refractive(More)
PURPOSE Alpha-crystallin, a ubiquitous molecular chaperone, is found in high concentrations in the lens. Its structure and precise mechanism of action, however, are unknown. The purpose of these experiments was to further the understanding of the chaperone function of alpha-crystallin. METHODS X-ray- and neutron-solution-scattering studies were used to(More)
PURPOSE The molecular chaperone αB-crystallin is found in high concentrations in the lens and is present in all major body tissues. Its structure and the mechanism by which it protects its target protein from aggregating and precipitating are not known. METHODS Dynamic light scattering and X-ray solution scattering techniques were used to investigate(More)
The eye lens grows throughout life by cell accrual on its surface and can change shape to adjust the focussing power of the eye. Varying concentrations of proteins in successive cell layers create a refractive index gradient. The continued growth of the lens and age-related changes in proteins render it less able to alter shape with loss of capacity by the(More)
  • 1