Justine M. Tyler

Learn More
Two peripheral proteins of the human erythrocyte membrane that are capable of forming a stable complex with spectrin have been purified. The proteins, band 2.1 (Mr 210,000) and band 4.1 (Mr 82,000), are water soluble and exist as monomers in solution. Both exhibit strong, specific binding to purified spectrin molecules as determined by cosedimentation in(More)
Specific associations of spectrin with Bands 2.1 and 4.1 have been examined by measuring the binding of purified 125I-Band 2.1 and 125I-Band 4.1 to [32P]spectrin in solution. Binding of Bands 2.1 and 4.1 to spectrin was measured as 125I radioactivity precipitated by an anti-spectrin. Staphylococcus aureus complex. The association between spectrin and Band(More)
The cytoskeletal components, macrophage actin-binding protein and filamin, were dried from glycerol and examined by low-angle rotary shadowing electron microscopy. Both are elongate, flexible molecules whose general morphologi is similar to that of erythrocyte spectrin. Neither actin-binding protein nor filamin binds to spectrin-depleted erythrocyte(More)
By shadowing specimens dried onto mice sheets we have obtained clear images of actin crosslinked by spectrin, an actin-binding protein found in erythrocytes. We conclude that spectrin dimers possess a single binding site for F actin. Tetramers formed by head-to-head association of two dimers possess two actin binding sites, one at each tail. Polymerizing G(More)
Persistent dysphagia following primary chemoradiation (CRT) for head and neck cancers can have a devastating impact on patients’ quality of life. Single arm studies have shown that the dosimetric sparing of critical swallowing structures such as the pharyngeal constrictor muscle and supraglottic larynx can translate to better functional outcomes. However,(More)