Justin V. Joseph

Learn More
Different molecular subtypes of glioblastoma (GBM) have been recently identified, of which the mesenchymal subtype is associated with worst prognoses. Here, we report that transforming growth factor-β (TGF-β) is able to induce a mesenchymal phenotype in GBM that involves activation of SMAD2 and ZEB1, a known transcriptional inducer of mesenchymal transition(More)
BACKGROUND High-grade astrocytomas are malignant brain tumours that infiltrate the surrounding brain tissue and have a poor prognosis. Activation of formyl peptide receptor (FPR1) on the human astrocytoma cell line U87 promotes cell motility, growth and angiogenesis. We therefore investigated the FPR1 inhibitor, Chemotaxis Inhibitory Protein of S. aureus(More)
Molecular signatures in Glioblastoma (GBM) have been described that correlate with clinical outcome and response to therapy. The Proneural (PN) and Mesenchymal (MES) signatures have been identified most consistently, but others including Classical (CLAS) have also been reported. The molecular signatures have been detected by array techniques at RNA and DNA(More)
Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumour in humans and is highly resistant to current treatment modalities. We have explored the combined treatment of the endoplasmic reticulum (ER) stress-inducing agent 2,5-dimethyl-celecoxib (DMC) and TNF-related apoptosis-inducing ligand (TRAIL WT) or the DR5-specific TRAIL D269H/E195R(More)
Glioblastoma (GBM) is a highly infiltrative brain tumor in which cells with properties of stem cells, called glioblastoma stem cells (GSCs), have been identified. In general, the dominant view is that GSCs are responsible for the initiation, progression, invasion and recurrence of this tumor. In this study, we addressed the question whether the(More)
BACKGROUND Amplification of the epidermal growth factor receptor (EGFR) and its mutant EGFRvIII are among the most common genetic alterations in glioblastoma (GBM), the most frequent and most aggressive primary brain tumor. METHODS In the present work, we analyzed the clonal evolution of these major EGFR aberrations in a small cohort of GBM patients using(More)
Formyl peptide receptor 1 (FPR1) activity in U87 glioblastoma (GBM) cells contributes to tumor cell motility. The present study aimed to evaluate the FPR1 expression in human GBM, the possibility to elicit agonist induced FPR1 activation of GBM cells and inhibit this activation with chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS).(More)
Background. Invasion and angiogenesis are major hallmarks of glioblastoma (GBM) growth. While invasive tumor cells grow adjacent to blood vessels in normal brain tissue, tumor cells within neovascularized regions exhibit hypoxic stress and promote angiogenesis. The distinct microenvironments likely differentially affect metabolic processes within the tumor(More)
  • 1