Justin R. Sparks

  • Citations Per Year
Learn More
For decades now, silicon has been the workhorse of the microelectronics revolution and a key enabler of the information age. Owing to its excellent optical properties in the near- and mid-infrared, silicon is now promising to have a similar impact on photonics. The ability to incorporate both optical and electronic functionality in a single material offers(More)
200 μm MRSEC researchers have fabricated the first optical Fibers made from zinc selenide, using a high-pressure Chemical deposition technique invented in the MRSEC. Optical fibers are a cornerstone of modern science and technology, yet remain fundamentally limited by the types of materials from which they can be made. With these new ZnSe fibers, it is now(More)
A silicon microstructured fiber has been designed and fabricated using a pure silica photonic bandgap guiding fiber as a 3D template for materials deposition. The resulting silicon fiber has a micron sized core but with a small core-cladding index contrast so that it only supports two guided modes. It will be shown that by using the microstructured template(More)
All-optical modulation based on degenerate and non-degenerate two-photon absorption (TPA) is demonstrated within a hydrogenated amorphous silicon core optical fiber. The nonlinear absorption strength is determined by comparing the results of pump-probe experiments with numerical simulations of the coupled propagation equations. Subpicosecond modulation is(More)
The tapering of silicon optical fibers is demonstrated using a fusion splicer. The silicon fibers are fabricated using a high pressure chemical deposition technique to deposit an amorphous silicon core inside a silica capillary and the tapering is performed in a separate post-process. Optical and material characterization has revealed a smooth transition(More)
Germanium optical fibers have been fabricated using a high pressure chemical deposition technique to deposit the semiconductor material inside a silica capillary. The amorphous germanium core material has a small percentage of hydrogen that saturates the dangling bonds to reduce absorption loss. Optical transmission measurements were performed to determine(More)
We investigate the surface roughness of polycrystalline silicon core optical fibers fabricated using a high-pressure chemical deposition technique. By measuring the optical transmission of two fibers with different core sizes, we will show that scattering from the core-cladding interface has a negligible effect on the losses. A Zemetrics ZeScope(More)
The nonlinear transmission properties of hydrogenated amorphous silicon (a-Si:H) core fibers are characterized from the near-infrared up to the edge of the mid-infrared regime. The results show that this material exhibits linear losses on the order of a few dB/cm, or less, over the entire wavelength range, decreasing down to a value of 0.29 dB/cm at 2.7μm,(More)
We investigate the guidance properties of two photonic crystal fibers that have been fabricated by filling the holes of a silica template with hydrogenated amorphous silicon inclusions. The first is an all-solid fiber that guides light via an antiresonant reflecting optical waveguiding mechanism and the second is only partially filled so that it guides(More)