Justin P. Wright

Learn More
Accelerating rates of species extinction have prompted a growing number of researchers to manipulate the richness of various groups of organisms and examine how this aspect of diversity impacts ecological processes that control the functioning of ecosystems. We summarize the results of 44 experiments that have manipulated the richness of plants to examine(More)
Over the past decade, accelerating rates of species extinction have prompted an increasing number of studies to reduce species diversity experimentally and examine how this alters the efficiency by which communities capture resources and convert those into biomass. So far, the generality of patterns and processes observed in individual studies have been the(More)
Ecosystem engineering – the physical modification of habitats by organisms – has been proposed as an important mechanism for maintaining high species richness at the landscape scale by increasing habitat heterogeneity. Dams built by beaver (Castor canadensis) dramatically alter riparian landscapes throughout much of North America. In the central(More)
Shahid Naeem* and Justin P. Wright Department of Zoology, University of Washington, 24 Kincaid Hall, Seattle, WA 98195, USA *Correspondence: E-mail: naeems@u.washington.edu Abstract Experimental investigations of the relationship between biodiversity and ecosystem functioning (BEF) directly manipulate diversity then monitor ecosystem response to the(More)
For more than 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating local diversity. The original view, which is still widely accepted, holds that the relationship is hump-shaped, with richness first rising and then declining with increasing productivity.(More)
Comparative and integrative tools are of fundamental value in ecology for understanding outcomes of biological processes, and making generalizations and predictions. Although ecosystem engineering has been shown to play a fundamental role in community organization, there are no standardized methods to measure such effects. We present a framework and(More)
Ecosystem engineers, organisms that modify the environment, have the potential to dramatically alter ecosystem structure and function at large spatial scales. The degree to which ecosystem engineering produces large-scale effects is, in part, dependent on the dynamics of the patches that engineers create. Here we develop a set of models that links the(More)
The theoretical foundations of population and community ecology stress the importance of identifying crucial niche requirements and life history stages of invasive species and, in doing so, give insight into research and management. We focus on Microstegium vimineum, an invasive grass which is causing marked changes in the structure and function of US(More)
A large fraction of engineered nanomaterials in consumer and commercial products will reach natural ecosystems. To date, research on the biological impacts of environmental nanomaterial exposures has largely focused on high-concentration exposures in mechanistic lab studies with single strains of model organisms. These results are difficult to extrapolate(More)
Studies linking the functional diversity of a biota to ecosystem functioning typically employ a priori classifications of species into hypothetically complementary groups. However, multiple alternate classifications exist in which the number of functional groups, the number of species per functional group, and the grouping of species differ from the a(More)