Justin M Gwilt

Learn More
Injection of the neurotoxin saporin-substance P (SSP-SAP) into the retrotrapezoid nucleus (RTN) attenuates the central chemoreflex in rats. Here we ask whether these deficits are caused by the destruction of a specific type of interneuron that expresses the transcription factor Phox2b and is non-catecholaminergic (Phox2b(+)TH(-)). We show that RTN contains(More)
Phox2b is required for development of the peripheral autonomic nervous system and a subset of cranial nerves and lower brainstem nuclei. Phox2b mutations in man cause diffuse autonomic dysfunction and deficits in the automatic control of breathing. Here we study the distribution of Phox2b in the adult rat hindbrain to determine whether this protein is(More)
The retrotrapezoid nucleus (RTN) contains central respiratory chemoreceptors that are inhibited by activation of slowly adapting pulmonary stretch receptors (SARs). Here we examine whether RTN inhibition by lung inflation could be mediated by a direct projection from SAR second-order neurons (pump cells). Pump cells (n = 56 neurons, 13 rats) were recorded(More)
The rat retrotrapezoid nucleus (RTN) contains CO(2)-activated neurons that contribute to the central chemoreflex and to breathing automaticity. These neurons have two known markers, the transcription factor Phox2b and vesicular glutamate transporter 2 (VGLUT2). Noncatecholaminergic galanin-immunoreactive (ir) neurons within a region of the lower brainstem(More)
  • 1