Learn More
Neurotransmitter release is potently blocked by a group of structurally related toxin proteins produced by Clostridium botulinum. Botulinum neurotoxin type B (BoNT/B) and tetanus toxin (TeTx) are zinc-dependent proteases that specifically cleave synaptobrevin (VAMP), a membrane protein of synaptic vesicles. Here we report that inhibition of transmitter(More)
The anaerobic bacterium Clostridium botulinum produces several related neurotoxins that block exocytosis of synaptic vesicles in nerve terminals and that are responsible for the clinical manifestations of botulism. Recently, it was reported that botulinum neurotoxin type B as well as tetanus toxin act as zinc-dependent proteases that specifically cleave(More)
Clostridial neurotoxins, tetanus toxin (TeTx) and the seven related but serologically distinct botulinal neurotoxins (BoNT/A to BoNT/G), are potent inhibitors of synaptic vesicle exocytosis in nerve endings. Recently it was reported that the light chains of clostridial neurotoxins act as zinc-dependent metalloproteases which specifically cleave synaptic(More)
Tetanus toxin (TeTx) and the various forms of botulinal neurotoxins (BoNT/A to BoNT/G) potently inhibit neurotransmission by means of their L chains which selectively proteolyze synaptic proteins such as synaptobrevin (TeTx, BoNT/B, BoNT/F), SNAP-25 (BoNT/A), and syntaxin (BoNT/C1). Here we show that BoNT/D cleaves rat synaptobrevin 1 and 2 in toxified(More)
Delayed cell death of projection cells in the CA1 area of the hippocampus is produced in the adult gerbil following 5 minutes (min) of transient forebrain ischemia. Parvalbumin-immunoreactive local-circuit neurons are resistant to the ischemic insult. Brain-Derived Neurotrophic Factor (BDNF) immunoreactivity is localized in all neurons of the CA1 area in(More)
Syntaxin 1 and synaptobrevin play an essential role in synaptic vesicle exocytosis. Two isoforms for each of these proteins, syntaxin 1A and 1B and synaptobrevin 1 and 2, have been found in nerve endings. Previous morphological studies have revealed a characteristic co-localization of syntaxin 1 and synaptobrevin isoforms in nervous and endocrine systems;(More)
SNAP-25 and Rab3A were originally identified as synaptic proteins involved in neuronal membrane traffic. Recently, both proteins have been detected in several mammalian endocrine cell types and have been proposed as essential components of the exocytotic pathway in neuroendocrine cells. In this study, the expression of SNAP-25 and Rab3A was analysed in(More)
Dystrophic neurites are major components of neuritic (both immature and mature) senile plaques in Alzheimer disease. Previous studies have shown strong immunoreactivity for different neuropeptides, and chromogranin A, a protein associated with dense-core vesicles, in dystrophic neurites. In the present study, antibodies to synaptophysin, synapsin, Rab3a and(More)
Syntaxin 1 and synaptosome-associated protein of 25 kD (SNAP-25) are neuronal plasmalemma proteins that appear to be essential for exocytosis of synaptic vesicles (SVs). Both proteins form a complex with synaptobrevin, an intrinsic membrane protein of SVs. This binding is thought to be responsible for vesicle docking and apparently precedes membrane fusion.(More)
Tetanus toxin and botulinal toxins are potent inhibitors of neuronal exocytosis. Within the past five years the protein sequences of all eight neurotoxins have been determined, their mode of action as metalloproteases has been established, and their intraneuronal targets have been identified. The toxins act by selectively proteolysing the synaptic vesicle(More)