Learn More
The cruciform hypothesis states that if a visual evoked potential component originates in V1, then stimuli placed in the upper versus lower visual fields will generate responses with opposite polarity at the scalp. This diagnostic has been used by many studies as a definitive marker of V1 sources. To provide an empirical test of the validity of the(More)
We used source imaging of visual evoked potentials to measure neural population responses over a wide range of horizontal disparities (0.5-64 arcmin). The stimulus was a central disk that moved back and forth across the fixation plane at 2 Hz, surrounded either by binocularly uncorrelated dots (disparity noise) or by correlated dots presented in the(More)
While regions of the lateral occipital cortex (LOC) are known to be selective for objects relative to feature-matched controls, it is not known what set of cues or configurations are used to promote this selectivity. Many theories of perceptual organization have emphasized the figure-ground relationship as being especially important in object-level(More)
The cruciform model posits that if a Visual Evoked Potential component originates in cortical area V1, then stimuli placed in the upper versus lower visual field will generate responses with opposite polarity at the scalp. In our original paper (Ales et al., 2010b) we showed that the cruciform model provides an insufficient criterion for identifying V1(More)
Using cortical source estimation techniques based on high-density EEG and fMRI measurements in humans, we measured how a disparity-defined surround influenced the responses to the changing disparity of a central disk within five visual ROIs: V1, V4, lateral occipital complex (LOC), hMT+, and V3A. The responses in the V1 ROI were not consistently affected(More)
EEG and MEG have excellent temporal resolution, but the estimation of the neural sources that generate the signals recorded by the sensors is a difficult, ill-posed problem. The high spatial resolution of functional MRI makes it an ideal tool to improve the localization of the EEG/MEG sources using data fusion. However, the combination of the two techniques(More)
Estimating cortical current distributions from electroencephalographic (EEG) or magnetoencephalographic data is a difficult inverse problem whose solution can be improved by the addition of priors on the associated neural responses. In the context of visual activation studies, we propose a new approach that uses a functional area constrained estimator(More)
We used fMRI-informed EEG source-imaging in humans to characterize the dynamics of cortical responses during a disparity-discrimination task. After the onset of a disparity-defined target, decision-related activity was found within an extended cortical network that included several occipital regions of interest (ROIs): V4, V3A, hMT+ and the Lateral(More)
Periodic visual stimulation and analysis of the resulting steady-state visual evoked potentials were first introduced over 80 years ago as a means to study visual sensation and perception. From the first single-channel recording of responses to modulated light to the present use of sophisticated digital displays composed of complex visual stimuli and(More)
The lateral occipital cortex (LOC) activates selectively to images of intact objects versus scrambled controls, is selective for the figure-ground relationship of a scene, and exhibits at least some degree of invariance for size and position. Because of these attributes, it is considered to be a crucial part of the object recognition pathway. Here we show(More)