Justin Driemeyer

Learn More
We consider the problem of grasping novel objects, specifically ones that are being seen for the first time through vision. Grasping a previously unknown object, one for which a 3-d model is not available, is a challenging problem. Further, even if given a model, one still has to decide where to grasp the object. We present a learning algorithm that neither(More)
We consider the problem of grasping novel objects, specifically, ones that are being seen for the first time through vision. We present a learning algorithm which predicts, as a function of the images, the position at which to grasp the object. This is done without building or requiring a 3-d model of the object. Our algorithm is trained via supervised(More)
We propose a learning algorithm for estimating the 3-D orientation of objects. Orientation learning is a difficult problem because the space of orientations is non-Euclidean, and in some cases (such as quaternions) the representation is ambiguous, in that multiple representations exist for the same physical orientation. Learning is further complicated by(More)
The ability to perceive the 3D shape of the environment is a basic ability for a robot. We present an algorithm to convert standard digital pictures into 3D models. This is a challenging problem, since an image is formed by a projection of the 3D scene onto two dimensions, thus losing the depth information. We take a supervised learning approach to this(More)
We consider the problem of grasping novel objects, specifically objects that are being seen for the first time through vision. Grasping a previously unknown object, one for which a 3-d model is not available, is a challenging problem. Furthermore, even if given a model, one still has to decide where to grasp the object. We present a learning algorithm that(More)
  • 1