Justin D. Chaffin

Learn More
In 2011, Lake Erie experienced the largest harmful algal bloom in its recorded history, with a peak intensity over three times greater than any previously observed bloom. Here we show that long-term trends in agricultural practices are consistent with increasing phosphorus loading to the western basin of the lake, and that these trends, coupled with(More)
Cyanobacterial blooms often occur in lakes that have high phosphorus (P) and low nitrogen (N) concentrations, and the growth rate of the blooms is often constrained by N. For these reasons, many researchers have suggested that regulation of both P and N is required to control eutrophication. However, because N occurs in many bioavailable forms, regulation(More)
Microcystis spp. blooms have occurred annually in western Lake Erie since about 1995. Microcystis produce a group of toxins known as microcystins which can be harmful to livestock and to humans. In this study, surface water samples were collected from six sites during six sampling events from July to October in 2007. In situ environmental data (e.g. pH,(More)
The use of microalgae for biofuel production has the potential to reduce fossil fuel consumption. Ideal candidate species of microalgae for bio-oil production need both relatively high growth rates and lipid content. Here, we report on the effects of temperature, nutrients (N, Si), and salinity on growth rates and lipid content of the common freshwater(More)
We discuss the uncertainty associated with a commonly used method for measuring the concentration of microcystin, a group of toxins associated with cyanobacterial blooms. Such uncertainty is rarely reported and accounted for in important drinking water management decisions. Using monitoring data from Ohio Environmental Protection Agency and from City of(More)
Harmful algal blooms (HABs) in freshwater ecosystems, especially of cyanobacterial species, are becoming more frequent and expanding geographically, including in Lake Erie in North America. HABs are the result of complex and synergistic environmental factors, though N or P eutrophication is a leading cause. With global mean temperatures expected to increase(More)
  • 1