Justin Bo-Kai Hsu

Learn More
Functional RNA molecules participate in numerous biological processes, ranging from gene regulation to protein synthesis. Analysis of functional RNA motifs and elements in RNA sequences can obtain useful information for deciphering RNA regulatory mechanisms. Our previous work, RegRNA, is widely used in the identification of regulatory motifs, and this work(More)
Studies over the last few years have identified protein methylation on histones and other proteins that are involved in the regulation of gene transcription. Several works have developed approaches to identify computationally the potential methylation sites on lysine and arginine. Studies of protein tertiary structure have demonstrated that the sites of(More)
Protein acetylation, which is catalyzed by acetyltransferases, is a type of post-translational modification and crucial to numerous essential biological processes, including transcriptional regulation, apoptosis, and cytokine signaling. As the experimental identification of protein acetylation sites is time consuming and laboratory intensive, several(More)
Tyrosine sulfation is a post-translational modification of many secreted and membrane-bound proteins. It governs protein-protein interactions that are involved in leukocyte adhesion, hemostasis, and chemokine signaling. However, the intrinsic feature of sulfated protein remains elusive and remains to be delineated. This investigation presents SulfoSite,(More)
Protein phosphorylation catalyzed by kinases plays crucial regulatory roles in intracellular signal transduction. With the increasing number of experimental phosphorylation sites that has been identified by mass spectrometry-based proteomics, the desire to explore the networks of protein kinases and substrates is motivated. Manning et al. have identified(More)
Regulation of pre-mRNA splicing is achieved through the interaction of RNA sequence elements and a variety of RNA-splicing related proteins (splicing factors). The splicing machinery in humans is not yet fully elucidated, partly because splicing factors in humans have not been exhaustively identified. Furthermore, experimental methods for splicing factor(More)
Sequence features in promoter regions are involved in regulating gene transcription initiation. Although numerous computational methods have been developed for predicting transcriptional start sites (TSSs) or transcription factor (TF) binding sites (TFBSs), they lack annotations for do not consider some important regulatory features such as CpG islands,(More)
MicroRNAs (miRNAs) are involved in various biological processes by suppressing gene expression. A recent work has indicated that host miRNAs are also capable of regulating viral gene expression by targeting the virus genomes. To investigate regulatory relationships between host miRNAs and related viruses, we present a novel database, namely ViTa, to curate(More)
MicroRNAs (miRNAs) are small non-coding RNA molecules that are ~22-nt-long sequences capable of suppressing protein synthesis. Previous research has suggested that miRNAs regulate 30% or more of the human protein-coding genes. The aim of this work is to consider various analyzing scenarios in the identification of miRNA-target interactions, as well as to(More)
Protein Post-Translational Modification (PTM) plays an essential role in cellular control mechanisms that adjust protein physical and chemical properties, folding, conformation, stability and activity, thus also altering protein function. dbPTM (version 1.0), which was developed previously, aimed on a comprehensive collection of protein post-translational(More)