Learn More
This paper presents the design of a body-powered voluntary closing prosthetic hand. It is argued that the movement of the fingers before establishing a grip is much less relevant for good control of the object held than the distribution of forces once the object has been contacted. Based on this notion, the configurations of forces on the fingers and the(More)
This article describes the development of a mobile arm support for people with muscular diseases. The arm support is spring-balanced, with special attention on reduction of operating effort (high balancing quality and low friction), functionality (large range of motion), and aesthetics (inconspicuous design). The spring settings can be adjusted for wearing(More)
The opinions of contributors are their own and are not necessarily those of the Department of Veterans Affairs. Contents of the Journal of Rehabilitatirm Research and Development are within the public domain with the exception of material specifically noted. 177 Mechanical efficiency during gait of adults with transtibial amputation : A pilot study(More)
The ability of underactuated hands to grasp small objects is very limited, because the precision grasp is normally unstable. The goal of this paper is to achieve stable precision grasps by means of simple design modifications of the distal phalanges of the fingers. These modifications comprise the curving of the contact area of the distal phalanx, the(More)
Shaking forces and shaking moments in high speed parallel manipulators are a significant cause of base vibrations. These vibrations can be eliminated by designing the manipulator to be shaking-force balanced and shaking-moment balanced. In this article an approach for the design and for the evaluation of high speed dynamically balanced parallel manipulators(More)
To evaluate and optimize the mechanical design of underactuated hands, a benchmark test is defined that quantifies the ability to hold grasped objects subject to force disturbances as occurs during for instance pick and place operations. The ability to hold is quantified by the magnitude of the maximum permitted static force on the center of a cylindrical(More)
Active movement-assistive devices aim to increase the quality of life for patients with neuromusculoskeletal disorders. This technology requires interaction between the user and the device through a control interface that detects the user’s movement intention. Researchers have explored a wide variety of invasive and non-invasive control interfaces. To(More)
Results after a total shoulder arthroplasty in rheumatoid patients are poor, indicated by loosening of especially the glenoid component, bad joint functionality and the possibility of a joint dislocation. The failure mechanisms behind this are multiple, including patient, surgical and design factors. These results must be improved. At present, the optimal(More)
Due to neuromuscular disorders (e.g., Duchenne Muscular Dystrophy) people often loose muscle strength and become wheelchair bound. It is important to use muscles as much as possible. To allow this, and to increase independency of patients, an arm orthoses can be used to perform activities of daily life. The orthoses compensates for the gravity force of the(More)
—For cosmetic reasons, hand prostheses are provided with cosmetic gloves. Their pleasing appearance, however, is accompanied by poor mechanical behavior, resulting in a negative influence on prosthesis operation. Glove stiffness is high and nonlinear, and internal friction in the glove material causes energy dissipation (hysteresis). In this article, two(More)