Learn More
2'-5'-oligoadenylate synthetases are interferon-induced, double-stranded RNA-activated antiviral enzymes which are the only proteins known to catalyze 2'-specific nucleotidyl transfer. This crystal structure of a 2'-5'-oligoadenylate synthetase reveals a structural conservation with the 3'-specific poly(A) polymerase that, coupled with structure-guided(More)
The 2'-5' oligoadenylate synthetases form a well conserved family of interferon induced proteins, presumably present throughout the mammalian class. Using the Expressed Sequence Tag databases, we have identified a novel member of this family. This protein, which we named p59 2'-5' oligoadenylate synthetase-like protein (p59OASL), shares a highly conserved(More)
The availability of full genome sequences has allowed the construction of microarrays, with which screening of the full genome for changes in gene expression is possible. This method can provide a wealth of information about biology at the level of gene expression and is a powerful method to identify genes and pathways involved in various processes. In this(More)
Aging of the human skeleton is characterized by decreased bone formation and bone mass and these changes are more pronounced in patients with osteoporosis. As osteoblasts and adipocytes share a common precursor cell in the bone marrow, we hypothesized that decreased bone formation observed during aging and in patients with osteoporosis is the result of(More)
We have developed a solid phase chemical cleavage method (SpCCM) for screening large DNA fragments for mutations. All reactions can be carried out in microtiterwells from the first amplification of the patient (or test) DNA through the search for mutations. The reaction time is significantly reduced compared to the conventional chemical cleavage method(More)
The gene for ISG12 (originally designated p27) was isolated as an oestrogen-induced gene. The authors undertook a comprehensive study using quantitative RT-PCR, in which we delineate the regulation of ISG12 by seven different cytokines including interferons and poly(I). poly(C) in seven human cell lines of different origin. In all cell lines ISG12 is(More)
Termination of translation in eukaryotes is governed by the ribosome, a termination codon in the mRNA, and two polypeptide chain release factors (eRF1 and eRF3). We have identified a human protein of 628 amino acids, named eRF3b, which is highly homologous to the known human eRF3 henceforth named eRF3a. At the nucleotide and at the amino acid levels the(More)
The genetic architecture underlying heat resistance remains partly unclear despite the well-documented involvement of heat shock proteins (Hsps). It was previously shown that factors besides Hsps are likely to play an important role for heat resistance. In this study, gene expression arrays were used to make replicate measurements of gene expression before(More)
It is known that the interferon-inducible 2',5'-oligoadenylate synthetase can catalyze the 2'-adenylation of various diadenosine polyphosphates. However, catabolism of those 2'-adenylated compounds has not been investigated so far. This study shows that the mono- and bis-adenylated (or mono- and bis-deoxyadenylated) diadenosine triphosphates are not(More)
Aging is associated with decreased trabecular bone mass and increased adipocyte formation in bone marrow. As osteoblasts and adipocytes share common precursor cells present in the bone marrow stroma, it has been proposed that an inverse relationship exists between adipocyte and osteoblast differentiation. In order to test this hypothesis, we studied mice(More)