Jussi Timonen

Learn More
We introduce a new method for mesoscopic modeling of protein diffusion in an entire cell. This method is based on the construction of a three-dimensional digital model cell from confocal microscopy data. The model cell is segmented into the cytoplasm, nucleus, plasma membrane, and nuclear envelope, in which environment protein motion is modeled by fully(More)
This study compared three approaches to bone assessment using ultrasonic axial transmission. In 41 fresh human radii, velocity of the first arriving signal was measured with a commercial device (Sunlight Omnisense) operating at 1.25 MHz, a prototype based on 1-MHz bidirectional axial transmission and a low-frequency (200 kHz) prototype, also measuring the(More)
Existing ultrasound devices for assessing the human tibia are based on detecting the first arriving signal, corresponding to a wave propagating at, or close to, the bulk longitudinal velocity in bone. However, human long bones are effectively irregular hollow tubes and should theoretically support the propagation of more complex guided modes similar to Lamb(More)
Determination of cortical bone thickness is warranted, e.g., for assessing the level of endosteal resorption in osteoporosis or other bone pathologies. We have shown previously that the velocity of the fundamental antisymmetric (or flexural) guided wave, measured for bone phantoms and bones in vitro, correlates with the cortical thickness significantly(More)
Simplicity of coding is usually an appealing feature of the lattice-Boltzmann method (LBM). Conventional implementations of LBM are often based on the two-lattice or the two-step algorithm, which however suffer from high memory consumption and poor computational performance, respectively. The aim of this work was to identify implementations of LBM that(More)
BACKGROUND Obesity and osteoporosis, two possibly related conditions, are rapidly expanding health concerns in modern society. Both of them are associated with sedentary life style and nutrition. To investigate the effects of diet-induced obesity and voluntary physical activity we used high resolution micro-computed tomography (μCT) together with peripheral(More)
Guided waves, consistent with the A0 Lamb mode, have previously been observed in bone phantoms and human long bones. Reported velocity measurements relied on line fitting of the observed wave fronts. Such an approach has limited ability to assess dispersion and is affected by interference by other wave modes. For a more robust identification of modes and(More)
Numerical micropermeametry is performed on three-dimensional porous samples having a linear size of approximately 3 mm and a resolution of 7.5 microm. One of the samples is a microtomographic image of Fontainebleau sandstone. Two of the samples are stochastic reconstructions with the same porosity, specific surface area, and two-point correlation function(More)
Nuclear positioning and dynamic interactions of viral proteins with nuclear substructures play essential roles during infection with DNA viruses. Visualization of the intranuclear interactions and motility of the parvovirus replication protein (NS1) in living cells gives insight into specific parvovirus protein-cellular structure interactions. Confocal(More)
Quantitative ultrasound (QUS) is a safe, inexpensive, and nonradiation method for bone density assessment. QUS correlates with, and predicts fragility fractures comparable to, dual-energy X-ray absorptiometry (DXA)-derived bone mineral density (BMD) in postmenopausal women. However, its validity in monitoring bone growth in children is not well understood.(More)