Learn More
Although the proteins that read the gene regulatory code, transcription factors (TFs), have been largely identified, it is not well known which sequences TFs can recognize. We have analyzed the sequence-specific binding of human TFs using high-throughput SELEX and ChIP sequencing. A total of 830 binding profiles were obtained, describing 239 distinctly(More)
Understanding the regulation of human gene expression requires knowledge of the "second genetic code," which consists of the binding specificities of transcription factors (TFs) and the combinatorial code by which TF binding sites are assembled to form tissue-specific enhancer elements. Using a novel high-throughput method, we determined the DNA binding(More)
During cell division, transcription factors (TFs) are removed from chromatin twice, during DNA synthesis and during condensation of chromosomes. How TFs can efficiently find their sites following these stages has been unclear. Here, we have analyzed the binding pattern of expressed TFs in human colorectal cancer cells. We find that binding of TFs is highly(More)
  • Fang Cheng, Magdalena Weidner-Glunde, Markku Varjosalo, Eeva-Marja Rainio, Anne Lehtonen, Thomas F. Schulz +3 others
  • 2009
Host signal-transduction pathways are intimately involved in the switch between latency and productive infection of herpes viruses. As with other herpes viruses, infection by Kaposi's sarcoma herpesvirus (KSHV) displays these two phases. During latency only few viral genes are expressed, while in the productive infection the virus is reactivated with(More)
To allow genome-scale identification of genes that regulate cellular signaling, we cloned >90% of all human full-length protein kinase cDNAs and constructed the corresponding kinase activity-deficient mutants. To establish the utility of this resource, we tested the effect of expression of the kinases on three different cellular signaling models. In all(More)
Members of the large ETS family of transcription factors (TFs) have highly similar DNA-binding domains (DBDs)-yet they have diverse functions and activities in physiology and oncogenesis. Some differences in DNA-binding preferences within this family have been described, but they have not been analysed systematically, and their contributions to targeting(More)
Large-scale RNA interference (RNAi)-based analyses, very much as other 'omic' approaches, have inherent rates of false positives and negatives. The variability in the standards of care applied to validate results from these studies, if left unchecked, could eventually begin to undermine the credibility of RNAi as a powerful functional approach. This(More)
Many high-throughput loss-of-function analyses of the eukaryotic cell cycle have relied on the unicellular yeast species Saccharomyces cerevisiae and Schizosaccharomyces pombe. In multicellular organisms, however, additional control mechanisms regulate the cell cycle to specify the size of the organism and its constituent organs. To identify such genes,(More)
The dispatched (disp) gene is required for long-range Hedgehog (Hh) signaling in Drosophila. Here, we demonstrate that one of two murine homologs, mDispA, can rescue disp function in Drosophila and is essential for all Hh patterning activities examined in the early mouse embryo. Embryonic fibroblasts lacking mDispA respond normally to exogenously provided(More)
  • Alexandra E. Gylfe, Riku Katainen, Johanna Kondelin, Tomas Tanskanen, Tatiana Cajuso, Ulrika Hänninen +11 others
  • 2013
Hereditary factors are presumed to play a role in one third of colorectal cancer (CRC) cases. However, in the majority of familial CRC cases the genetic basis of predisposition remains unexplained. This is particularly true for families with few affected individuals. To identify susceptibility genes for this common phenotype, we examined familial cases(More)