Learn More
Smoothened (Smo), a distant relative of G protein-coupled receptors, mediates Hedgehog (Hh) signaling during embryonic development and can initiate or transmit ligand-independent pathway activation in tumorigenesis. Although the cellular mechanisms that regulate Smo function remain unclear, the direct inhibition of Smo by cyclopamine, a plant-derived(More)
The steroidal alkaloid cyclopamine has both teratogenic and antitumor activities arising from its ability to specifically block cellular responses to vertebrate Hedgehog signaling. We show here, using photoaffinity and fluorescent derivatives, that this inhibitory effect is mediated by direct binding of cyclopamine to the heptahelical bundle of Smoothened(More)
Much recent research has focused on the study of the expression of growth factor genes and on the identification of growth factor signaling mechanisms inside cells. However, growth factor signaling can also be regulated outside of cells by extracellular matrix proteins and proteolytic enzymes. The ability of extracellular proteins to process complex(More)
Lymphatic vessels are essential for immune surveillance, tissue fluid homeostasis and fat absorption. Defects in lymphatic vessel formation or function cause lymphedema. Here we show that the vascular endothelial growth factor C (VEGF-C) is required for the initial steps in lymphatic development. In Vegfc-/- mice, endothelial cells commit to the lymphatic(More)
Although the proteins that read the gene regulatory code, transcription factors (TFs), have been largely identified, it is not well known which sequences TFs can recognize. We have analyzed the sequence-specific binding of human TFs using high-throughput SELEX and ChIP sequencing. A total of 830 binding profiles were obtained, describing 239 distinctly(More)
Many high-throughput loss-of-function analyses of the eukaryotic cell cycle have relied on the unicellular yeast species Saccharomyces cerevisiae and Schizosaccharomyces pombe. In multicellular organisms, however, additional control mechanisms regulate the cell cycle to specify the size of the organism and its constituent organs. To identify such genes,(More)
The role of latent transforming growth factor-beta (TGF-beta) binding protein (LTBP) in the association of TGF-beta 1 to the extracellular matrix of cultured fibroblasts and HT-1080 fibrosarcoma cells was studied by immunochemical methods. The matrices were isolated from the cells, and the levels of LTBP and TGF-beta 1 were estimated by immunoblotting and(More)
During cell division, transcription factors (TFs) are removed from chromatin twice, during DNA synthesis and during condensation of chromosomes. How TFs can efficiently find their sites following these stages has been unclear. Here, we have analyzed the binding pattern of expressed TFs in human colorectal cancer cells. We find that binding of TFs is highly(More)
A sensitive immunoblotting assay was developed for the detection of transforming growth factor (TGF)-beta 1 from cell extracts and culture medium. HT-1080 human fibrosarcoma cells and human fibroblasts were used as models for the secretion and proteolytic release of pericellular matrix-associated TGF-beta 1. Analysis of the pericellular matrices of the(More)
Cohesin is present in almost all active enhancer regions, where it is associated with transcription factors. Cohesin frequently colocalizes with CTCF (CCCTC-binding factor), affecting genomic stability, expression and epigenetic homeostasis. Cohesin subunits are mutated in cancer, but CTCF/cohesin-binding sites (CBSs) in DNA have not been examined for(More)