Jussi Rahola

Learn More
Sources of brain activity, e.g. epileptic foci, can be localized with Magnetoencephalography (MEG) measurements by recording the magnetic field outside the head. For a successful surgery a very high localization accuracy is needed. The most often used conductor model in the source localization is an analytic sphere, which is not always adequate, and thus a(More)
Accurate localization of brain activity recorded by magnetoencephalography (MEG) requires that the forward problem, i.e. the magnetic field caused by a dipolar source current in a homogeneous volume conductor, be solved precisely. We have used the Galerkin method with piecewise linear basis functions in the boundary element method to improve the solution of(More)
The volume integral equation of electromagnetic scattering can be used to compute the scattering by inhomogeneous or anisotropic scatterers. In this paper we compute the spectrum of the scattering integral operator for a sphere and the eigenvalues of the coeecient matrices that arise from the discretization of the integral equation. For the case of a(More)
  • 1