Jurriaan J J Gillissen

  • Citations Per Year
Learn More
The interaction of nanoscale lipid vesicles with cell membranes is of fundamental importance for the design and development of vesicular drug delivery systems. Here, we introduce a novel approach to study vesicle-membrane interactions whereby we are able to probe the influence of nanoscale membrane properties on the dynamic adsorption, exchange, and(More)
Polymer-induced drag reduction is the phenomenon by which the friction factor of a turbulent flow is reduced by the addition of small amounts of high-molecular-weight linear polymers, which conformation in solution at rest can vary between randomly coiled and rodlike. It is well known that drag reduction is positively correlated to viscous stresses, which(More)
Polymer solution flow is studied numerically in a periodic, hexagonal array of cylinders as a model for a porous medium. We use a lattice Boltzmann method supplemented by a polymer stress, where the polymers are modeled as finitely extensible, nonlinear, elastic dumbbells. The simulated, nonmonotonic behavior of the effective viscosity μ(eff) as a function(More)
We propose to stabilize the thermal lattice Boltzmann method by filtering the second- and third-order moments of the collision operator. By means of the Chapman-Enskog expansion, we show that the additional numerical diffusivity diminishes in the low-wavnumber limit. To demonstrate the enhanced stability, we consider a three-dimensional thermal lattice(More)
The efficiency of lipid nanoparticle uptake across cellular membranes is strongly dependent on the very first interaction step. Detailed understanding of this step is in part hampered by the large heterogeneity in the physicochemical properties of lipid nanoparticles, such as liposomes, making conventional ensemble-averaging methods too blunt to address(More)
Characterizing the deformation of nanoscale, soft-matter particulates at solid-liquid interfaces is a demanding task, and there are limited experimental options to perform quantitative measurements in a non-perturbative manner. Previous attempts, based on the quartz crystal microbalance (QCM) technique, focused on the high surface coverage regime and(More)
The solvent-assisted lipid bilayer (SALB) method offers a general strategy to fabricate supported lipid bilayers on solid surfaces. In this method, lipids dissolved in alcohol are deposited on the target substrate in parallel with their aggregation during exchange with aqueous buffer solution which promotes spontaneous bilayer formation. Herein, a(More)
Using single-particle tracking, we investigate the interaction of small unilamellar vesicles (SUVs) that are electrostatically tethered to the freestanding membrane of a giant unilamellar vesicle (GUV). We find that the surface mobility of the GUV-riding SUVs is Brownian, insensitive to the bulk viscosity, vesicle size, and vesicle fluidity but strongly(More)
Simulations of maximum drag reduction (MDR) in channel flow using constitutive equations for suspensions of noninteracting rods predict a few-fold larger turbulent kinetic energy than in experiments using rodlike polymers. These differences are attributed to the neglect of interactions between polymers in the simulations. Despite these inconsistencies the(More)
A surface reaction boundary condition in multicomponent lattice Boltzmann simulations is developed. The method is applied to a test case with nonlinear reaction rates and nonlinear density profiles. The results are compared to the corresponding analytical solution, which shows that the error of the method scales with the square of the lattice spacing.