Jurij Dolensek

Learn More
We propose a network representation of electrically coupled beta cells in islets of Langerhans. Beta cells are functionally connected on the basis of correlations between calcium dynamics of individual cells, obtained by means of confocal laser-scanning calcium imaging in islets from acute mouse pancreas tissue slices. Obtained functional networks are(More)
In endocrine cells within islets of Langerhans calcium ions couple cell stimulation to hormone secretion. Since the advent of modern fluorimetry, numerous in vitro studies employing primarily isolated mouse islets have investigated the effects of various secretagogues on cytoplasmic calcium, predominantly in insulin-secreting beta cells. Due to technical(More)
Mice remain the most studied animal model in pancreas research. Since the findings of this research are typically extrapolated to humans, it is important to understand both similarities and differences between the 2 species. Beside the apparent difference in size and macroscopic organization of the organ in the 2 species, there are a number of less evident(More)
Collective beta cell activity in islets of Langerhans is critical for the supply of insulin within an organism. Even though individual beta cells are intrinsically heterogeneous, the presence of intercellular coupling mechanisms ensures coordinated activity and a well-regulated exocytosis of insulin. In order to get a detailed insight into the functional(More)
Exocytotic machinery in neuronal and endocrine tissues is sensitive to changes in intracellular Ca(2+) concentration. Endocrine cell models, that are most frequently used to study the mechanisms of regulated exocytosis, are pancreatic beta cells, adrenal chromaffin cells and pituitary cells. To reliably study the Ca(2+) sensitivity in endocrine cells,(More)
In vivo investigations of catfish olfactory receptor neurons (ORNs) were previously limited to studying responses of spontaneously active cells. The olfactory organ, however, also contains ORNs that lack spontaneous activity and respond to amino acids. To record electrical activity of ORNs that were inactive prior to stimulation, we bathed the olfactory(More)
Self-sustained oscillatory dynamics is a motion along a stable limit cycle in the phase space, and it arises in a wide variety of mechanical, electrical, and biological systems. Typically, oscillations are due to a balance between energy dissipation and generation. Their stability depends on the properties of the attractor, in particular, its dissipative(More)
In β cells, stimulation by metabolic, hormonal, neuronal, and pharmacological factors is coupled to secretion of insulin through different intracellular signaling pathways. Our knowledge about the molecular machinery supporting these pathways and the patterns of signals it generates comes mostly from rodent models, especially the laboratory mouse. The(More)
Beta cells in the pancreatic islets of Langerhans are precise biological sensors for glucose and play a central role in balancing the organism between catabolic and anabolic needs. A hallmark of the beta cell response to glucose are oscillatory changes of membrane potential that are tightly coupled with oscillatory changes in intracellular calcium(More)
Oscillatory electrical activity is regarded as a hallmark of the pancreatic beta cell glucose-dependent excitability pattern. Electrophysiologically recorded membrane potential oscillations in beta cells are associated with in-phase oscillatory cytosolic calcium activity ([Ca(2+)]i) measured with fluorescent probes. Recent high spatial and temporal(More)
  • 1