Jurgen Sygusch

Learn More
The crystal structure of p24, the single-stranded DNA (ssDNA) binding subunit of the plant defense transcription factor PBF-2, has been determined to 2.3 Å resolution. p24 is representative of a novel family of ubiquitous plant-specific proteins that we refer to as the Whirly family because of their quaternary structure. PBF-2 is composed of four p24(More)
Apicomplexan parasites rely on actin-based motility to drive host cell invasion. Prior in vitro studies implicated aldolase, a tetrameric glycolytic enzyme, in coupling actin filaments to the parasite's surface adhesin microneme protein 2 (MIC2). Here, we test the essentiality of this interaction in host cell invasion. Based on in vitro studies and homology(More)
The MmpL family of proteins translocates complex (glyco)lipids and siderophores across the cell envelope of mycobacteria and closely related Corynebacteriaceae and plays important roles in the biogenesis of the outer membrane of these organisms. Despite their significance in the physiology and virulence of Mycobacterium tuberculosis, and from the(More)
Bacillus megaterium P1, a bacterial strain capable of hydrolyzing chitosan, was isolated from soil samples. Chitosan-degrading activity was induced by chitosan but not by its constituent d-glucosamine. Extracellular secretion of chitosanase reached levels corresponding to 1 U/ml under optimal conditions. Three chitosan-degrading proteins (chitosanases A, B,(More)
Crystal structures were determined to 1.8 A resolution of the glycolytic enzyme fructose-1,6-bis(phosphate) aldolase trapped in complex with its substrate and a competitive inhibitor, mannitol-1,6-bis(phosphate). The enzyme substrate complex corresponded to the postulated Schiff base intermediate and has reaction geometry consistent with incipient C3-C4(More)
Bacteria resistant to methylmercury utilize two enzymes (MerA and MerB) to degrade methylmercury to the less toxic elemental mercury. The crucial step is the cleavage of the carbon-mercury bond of methylmercury by the organomercurial lyase (MerB). In this study, we determined high resolution crystal structures of MerB in both the free (1.76-A resolution)(More)
Class I fructose-1,6-bisphosphate aldolases catalyze the interconversion between the enamine and iminium covalent enzymatic intermediates by stereospecific exchange of the pro(S) proton of the dihydroxyacetone-phosphate C3 carbon, an obligatory reaction step during substrate cleavage. To investigate the mechanism of stereospecific proton exchange, high(More)
The molecular architecture of the rabbit skeletal muscle aldolase (D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate-lyase, EC tetramer has been determined to 2.7-A resolution. Solution of the three-dimensional structure of rabbit muscle aldolase utilized phase information from a single isomorphous Pt(CN)4(2-) derivative, which was combined(More)
2-Keto-3-deoxy-6-phosphogluconate (KDPG) aldolase catalyzes the reversible cleavage of KDPG to pyruvate and glyceraldehyde-3-phosphate. The enzyme is a class I aldolase whose reaction mechanism involves formation of Schiff base intermediates between Lys-133 and a keto substrate. A covalent adduct was trapped by flash freezing KDPG aldolase crystals soaked(More)