Jurek Czyzowicz

Learn More
A set of sensors establishes barrier coverage of a given line segment if every point of the segment is within the sensing range of a sensor. Given a line segment I, n mobile sensors in arbitrary initial positions on the line (not necessarily inside I) and the sensing ranges of the sensors, we are interested in finding final positions of sensors which(More)
Autonomous identical robots represented by unit discsmove deterministically in the plane. They do not have any common coordinate system, do not communicate, do not have memory of the past and are totally asynchronous. Gathering such robots means forming a configuration for which the union of all discs representing them is connected.We solve the gathering(More)
We consider n mobile sensors located on a line containing a barrier represented by a finite line segment. Sensors form a wireless sensor network and are able to move within the line. An intruder traversing the barrier can be detected only when it is within the sensing range of at least one sensor. The sensor network establishes barrier coverage of the(More)
A set of k mobile agents are placed on the boundary of a simply connected planar object represented by a cycle of unit length. Each agent has its own predefined maximal speed, and is capable of moving around this boundary without exceeding its maximal speed. The agents are required to protect the boundary from an intruder which attempts to penetrate to the(More)
A black hole is a highly harmful stationary process residing in a node of a network and destroying all mobile agents visiting the node, without leaving any trace. We consider the task of locating a black hole in a (partially) synchronous network, assuming an upper bound on the time of any edge traversal by an agent. The minimum number of agents capable to(More)
Let shape P be any simply-connected set in the plane, bounded by a Jordan curve, that is not a circular disk. We say that a set of points I on the boundary of P immobilize the shape if any rigid motion of P in the plane causes at least one point of I to penetrate the interior of P. We prove that four points always suffice to immobilize any shape. For a(More)