Jur P. van den Berg

Learn More
In this paper, we present a formal approach to reciprocal n-body collision avoidance, where multiple mobile robots need to avoid collisions with each other while moving in a common workspace. In our formulation, each robot acts fully independently, and does not communicate with other robots. Based on the definition of velocity obstacles [5], we derive(More)
In this paper, we propose a new concept - the "Reciprocal Velocity Obstacle"- for real-time multi-agent navigation. We consider the case in which each agent navigates independently without explicit communication with other agents. Our formulation is an extension of the Velocity Obstacle concept [3], which was introduced for navigation among (passively)(More)
In this paper we address the problem of motion planning for multiple robots. We introduce a prioritized method, based on a powerful method for motion planning in dynamic environments, recently developed by the authors. Our approach is generically applicable: there is no limitation on the number of degrees of freedom of each of the robots, and robots of(More)
We present a new approach to motion planning under sensing and motion uncertainty by computing a locally optimal solution to a continuous partially observable Markov decision process (POMDP). Our approach represents beliefs (the distributions of the robot’s state estimate) by Gaussian distributions and is applicable to robot systems with non-linear dynamics(More)
We present an efficient, anytime method for path planning in dynamic environments. Current approaches to planning in such domains either assume that the environment is static and replan when changes are observed, or assume that the dynamics of the environment are perfectly known a priori. Our approach takes into account all prior information about both the(More)
We present the hybrid reciprocal velocity obstacle for collision-free and oscillation-free navigation of multiple mobile robots or virtual agents. Each robot senses its surroundings and acts independently without central coordination or communication with other robots. Our approach uses both the current position and the velocity of other robots to compute(More)
We present a novel approach for interactive navigation and planning of multiple agents in crowded scenes with moving obstacles. Our formulation uses a precomputed roadmap that provides macroscopic, global connectivity for wayfinding and combines it with fast and localized navigation for each agent. At runtime, each agent senses the environment independently(More)
We present an approach for collision avoidance for mobile robots that takes into account acceleration constraints. We discuss both the case of navigating a single robot among moving obstacles, and the case of multiple robots reciprocally avoiding collisions with each other while navigating a common workspace. Inspired by the concept of velocity obstacles(More)
In this paper, a new method is presented for motion planning in dynamic environments, that is, finding a trajectory for a robot in a scene consisting of both static and dynamic, moving obstacles. We propose a practical algorithm based on a roadmap that is created for the static part of the scene. On this roadmap, an approximately time-optimal trajectory(More)
We present Kinodynamic RRT*, an incremental sampling-based approach for asymptotically optimal motion planning for robots with linear dynamics. Our approach extends RRT*, which was introduced for holonomic robots [10], by using a fixed-final-state-free-final-time controller that optimally connects any pair of states, where the cost function is expressed as(More)