Learn More
This paper proposes FlashLinQ--a synchronous peer-to-peer wireless PHY/MAC network architecture. FlashLinQ leverages the fine-grained parallel channel access offered by OFDM and incorporates an analog energy-level-based signaling scheme that enables signal-to-interference ratio (SIR)-based distributed scheduling. This new signaling mechanism, and the(More)
This paper proposes a synchronous device discovery solution for ad-hoc networks based on the observations that time synchronization, along with an FDM based channel resource allocation, can lead to gains in terms of energy consumption, discovery range, and the number of devices discovered. These attributes are important for the success of proximity-aware(More)
We present a new scheme that addresses the call handoff problem in mobile cellular networks. Efficiently solving the handoff problem is important for guaranteeing Quality of Service (QoS) to already admitted calls in the network. Our scheme is based on a new concept called channel car,rying: when a mobile user moves from one cell to another, under certain(More)
Recent deployments of data-rich smart phones has provided a fresh impetus for designing, deploying and understanding the performance of wide area ad-hoc networks. The most popular medium access mechanism for such ad hoc networks is CSMA/CA with RTS/CTS. In this paper, using tools from stochastic geometry, we study and optimize the throughput performance of(More)