Learn More
A facile fast laser nanoscale welding process uses the plasmonic effect at a nanowire (NW) junction to suppress oxidation and successfully fabricate a Cu-NW-based percolation-network conductor. The "nanowelding" process does not require an inert or vacuum environment. Due to the low-temperature and fast-process nature, plasmonic laser nanowelding may form(More)
Stretchable and transparent electronics have steadily attracted huge attention in wearable devices. Although Ag nanowire is the one of the most promising candidates for transparent and stretchable electronics, its electrochemical instability has forbidden its application to the development of electrochemical energy devices such as supercapacitors. Here, we(More)
Transparent and stretchable energy storage devices have attracted significant interest due to their potential to be applied to biocompatible and wearable electronics. Supercapacitors that use the reversible faradaic redox reaction of conducting polymer have a higher specific capacitance as compared with electrical double-layer capacitors. Typically, the(More)
A highly stretchable metal electrode is developed via the solution-processing of very long (>100 μm) metallic nanowires and subsequent percolation network formation via low-temperature nanowelding. The stretchable metal electrode from very long metal nanowires demonstrated high electrical conductivity (~9 ohm sq(-1) ) and mechanical compliance (strain >(More)
We introduce a facile approach to fabricate a metallic grid transparent conductor on a flexible substrate using selective laser sintering of metal nanoparticle ink. The metallic grid transparent conductors with high transmittance (>85%) and low sheet resistance (30 Ω/sq) are readily produced on glass and polymer substrates at large scale without any vacuum(More)
A highly stretchable and transparent electrical heater is demonstrated by constructing a partially embedded silver nanowire percolative network on an elastic substrate. The stretchable network heater is applied on human wrists under real-time strain, bending, and twisting, and has potential for lightweight, biocompatible, and versatile wearable applications.
For various applications in the electronics industry, the fabrication of electrically conductive nanoand micropatterns has become important. Conventional vacuum metal deposition and photolithography processes are widely used for high-resolution metal patterning of microelectronics. However, those conventional approaches require expensive vacuum conditions,(More)
Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight(More)
We introduce a facile method to enhance the functionality of a patterned metallic transparent conductor through selective laser ablation of metal nanowire percolation network. By scanning focused nanosecond pulsed laser on silver nanowire percolation network, silver nanowires are selectively ablated and patterned without using any conventional chemical(More)
Inkjet printing of functional materials has drawn tremendous interest as an alternative to the conventional photolithography-based microelectronics fabrication process development. We introduce direct selective nanowire array growth by inkjet printing of Zn acetate precursor ink patterning and subsequent hydrothermal ZnO local growth without nozzle clogging(More)