Learn More
Nonviral gene delivery systems based on conventional high molecular weight chitosans are efficient as DNA vaccine delivery system, but have poor physical properties such as aggregated shapes, low solubility at neutral pH, high viscosity at concentrations used for in vivo delivery and a slow onset of action. Furthermore, Chitosan oligomers shorter than 14(More)
Reactive oxygen species (ROS) are involved in cell growth, differentiation, and death. Excessive amounts of ROS (e.g., O(2)(-), H(2)O(2), and HO) play a role in aging as well as in many human diseases. Superoxide dismutase (SOD) and glutathione peroxidase (GPx) are critical antioxidant enzymes in living organisms. SOD catalyzes the dismutation of O(2)(-) to(More)
Glutathione peroxidase (GPX) protects cells against oxidative damage by catalyzing the reduction of hydroperoxides by glutathione (GSH). GPX therefore has potential therapeutic value as an antioxidant, but its pharmacological development has been limited because GPX uses a selenocysteine as its catalytic group and it is difficult to generate(More)
The antioxidant effect of selenium-containing single-chain Fv catalytic antibody (Se-scFv2F3), a new mimic of glutathione peroxidase, was confirmed using a model system in which cultured rat skin epidermal cells were injured by ultraviolet B (UVB). The cell damage was characterized in terms of lipid peroxidation of the cells, cell viability, and cell(More)
Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) exhibits potent antitumour activity via membrane receptors on cancer cells without deleterious side-effects for normal tissue. Unfortunately, like many other cancer types, breast cancer cells develop resistance to TRAIL; therefore, TRAIL-sensitising agents are currently being explored. In this(More)
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) exhibits potent antitumor activity via membrane receptors on cancer cells without deleterious side effects for normal tissue. Unfortunately, breast cancer cells, as many other cancer types, develop resistance to TRAIL; therefore, TRAIL sensitizing agents are currently being explored.(More)
The antioxidant activity of a novel artificial glutathione peroxidase-like enzyme, selenium-containing glutathione 5-transferase from Lucilia cuprina (seleno-LuGST1-1), was studied by using a ferrous sulfate/ascorbate-induced mitochondrial damage model system. Swelling of mitochondria, lipid peroxidation, and cytochrome-c oxidase activity were selected to(More)
Selenium-containing glutathione transferase (seleno-GST) was generated by biologically incorporating selenocysteine into the active site of glutathione transferase (GST) from a blowfly Lucilia cuprina (Diptera: Calliphoridae). Seleno-GST mimicked the antioxidant enzyme glutathione peroxidase (GPx) and catalyzed the reduction of structurally different(More)
A novel dicyclodextrinyl ditelluride (2-TeCD) compound was devised as a functional mimic of the glutathione peroxidase (GPX) enzymes that normally remove hydroperoxides from the cell. The GPX activity of the mimic was found to be 46.7 U microM(-1), which is 46 times as active as Ebselen, a well-known GPX mimic. A detailed steady-state kinetic study was(More)
Construction of catalytic centers on natural protein aggregates is a challenging topic in biomaterial and biomedicine research. Here we report a novel construction of artificial nanoenzyme with glutathione peroxidase (GPx)-like function. By engineering the surface of tobacco mosaic virus (TMV) coat protein, the main catalytic components of GPx were(More)