Junqi Yuan

  • Citations Per Year
Learn More
The Cheerios effect is a common phenomenon in which small floating objects are either attracted or repelled by the sidewall due to capillary interaction. This attractive or repulsive behavior is highly dependent on the slope angles (angles of the interface on the wall or floating object with respect to a horizontal line) that can be mainly controlled by the(More)
This paper describes an underwater micropropulsion principle where a gaseous bubble trapped in a suspended microchannel and oscillated by external acoustic excitation generates a propelling force. The propelling swimmer is designed and microfabricated from parylene on the microscale (the equivalent diameter of the cylindrical bubble is around 60 μm) using(More)
This paper introduces cycle-reconfigurable modules that enhance FPGA architectures with efficient support for dynamic data accesses: data accesses with accessed data size and location known only at runtime. The proposed module adopts new reconfiguration strategies based on dynamic FIFOs, dynamic caches, and dynamic shared memories to significantly reduce(More)
This paper presents a parameterized system-level design framework, which enables rapid and powerful research for hybrid multicore architecture exploration and hardware/software codesign. The framework comprises the component-based hardware design and application compiler, which make it easy for a designer to build stream-oriented applications with(More)
This paper describes bi-directional (linear and rotational) propelling and 2-D steering of acoustic bubble-powered microswimmers that are achieved in a centimeter-scale pool (beyond chip level scale). The core structure of a microswimmer is a microtube with one end open in which a gaseous bubble is trapped. The swimmer is propelled by microstreaming flows(More)
  • 1