Learn More
We reported that atomically dispersed Pd on graphene can be fabricated using the atomic layer deposition technique. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure spectroscopy both confirmed that isolated Pd single atoms dominantly existed on the graphene support. In selective(More)
Routing is a challenging issue in Delay/Disruption Tolerant Networks (DTNs) due to the characteristics of high mobility of nodes and high dynamicity of network topology. The previous works did not consider the spacial information of nodes, such as dwelling time at a location when predicting the future contact of two nodes. In this paper, a novel Spacial(More)
Delay tolerant networks (DTNs) make use of opportunistic encounters of nodes for communication. The characteristics of high mobility of nodes, frequent link variation and long communication delays in DTNs result in an absence of an instantaneous end-to-end path from any source to a destination, making routing a challenge in DTNs. To deal with this issue, a(More)
We showed that alumina (Al(2)O(3)) overcoating of supported metal nanoparticles (NPs) effectively reduced deactivation by coking and sintering in high-temperature applications of heterogeneous catalysts. We overcoated palladium NPs with 45 layers of alumina through an atomic layer deposition (ALD) process that alternated exposures of the catalysts to(More)
Multi-metallic nanoparticles constitute a new class of materials offering the opportunity to tune the properties via the composition, atomic ordering and size. In particular, supported bimetallic nanoparticles have generated intense interest in catalysis and electrocatalysis. However, traditional synthesis methods often lack precise control, yielding a(More)
The synthesis of uniformly dispersed nano/subnanometer Pd nanoparticles on oxide supports with atomic layer deposition (ALD) has been studied in terms of growth and morphology. In situ quartz crystal microbalance (QCM) measurements showed that AB-type Pd ALD grew more favorably on TiO(2) than on Al(2)O(3) at 200 °C by the sequential exposure of Pd(II)(More)
Supported metal nanoparticles are among the most important catalysts for many practical reactions, including petroleum refining, automobile exhaust treatment, and Fischer-Tropsch synthesis. The catalytic performance strongly depends on the size, composition, and structure of the metal nanoparticles, as well as the underlying support. Scientists have used(More)